Victor Fernandez-Dueñas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1357562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Remote local photoactivation of morphine produces analgesia without opioidâ€related adverse effects. British Journal of Pharmacology, 2023, 180, 958-974.	2.7	15
2	Overcoming the Challenges of Detecting GPCR Oligomerization in the Brain. Current Neuropharmacology, 2022, 20, 1035-1045.	1.4	7
3	Decreased striatal adenosine A2A-dopamine D2 receptor heteromerization in schizophrenia. Neuropsychopharmacology, 2021, 46, 665-672.	2.8	24
4	Monitoring GPCR-Mediated cAMP Accumulation in Rat Striatal Synaptosomes. Neuromethods, 2021, , 531-540.	0.2	0
5	Optical Control of Brain Receptors Using Photoactive Drugs in Behaving Animals. Neuromethods, 2021, , 513-522.	0.2	0
6	Amplified Luminescent Proximity Homogeneous Assay (Alpha)-Based Technique to Detect GPCR Oligomers in Human Postmortem Brain. Neuromethods, 2021, , 135-142.	0.2	0
7	GPCR-Mediated MAPK/ERK Cascade Activation in Mouse Striatal Slices. Neuromethods, 2021, , 541-549.	0.2	0
8	Ecto-GPR37: a potential biomarker for Parkinson's disease. Translational Neurodegeneration, 2021, 10, 8.	3.6	19
9	Optical Control of Adenosine-Mediated Pain Modulation. Bioconjugate Chemistry, 2021, 32, 1979-1983.	1.8	8
10	Involvement of adenosine A1 and A2A receptors on guanosine-mediated anti-tremor effects in reserpinized mice. Purinergic Signalling, 2020, 16, 379-387.	1.1	9
11	Control of glutamate release by complexes of adenosine and cannabinoid receptors. BMC Biology, 2020, 18, 9.	1.7	51
12	Striatal Dopamine D2-Muscarinic Acetylcholine M1 Receptor–Receptor Interaction in a Model of Movement Disorders. Frontiers in Pharmacology, 2020, 11, 194.	1.6	11
13	Design, Synthesis and Characterization of a New Series of Fluorescent Metabotropic Glutamate Receptor Type 5 Negative Allosteric Modulators. Molecules, 2020, 25, 1532.	1.7	2
14	Revealing Adenosine A2A-Dopamine D2 Receptor Heteromers in Parkinson's Disease Post-Mortem Brain through a New AlphaScreen-Based Assay. International Journal of Molecular Sciences, 2019, 20, 3600.	1.8	40
15	Proximity Ligation Assay Image Analysis Protocol: Addressing Receptor-Receptor Interactions. Methods in Molecular Biology, 2019, 2040, 41-50.	0.4	27
16	<scp>l</scp> -Serine dietary supplementation is associated with clinical improvement of loss-of-function <i>GRIN2B</i> -related pediatric encephalopathy. Science Signaling, 2019, 12, .	1.6	53
17	Optical Modulation of Metabotropic Glutamate Receptor Type 5 In Vivo Using a Photoactive Drug. Methods in Molecular Biology, 2019, 1947, 351-359.	0.4	4
18	Adenosine A1-A2A Receptor-Receptor Interaction: Contribution to Guanosine-Mediated Effects. Cells, 2019, 8, 1630.	1.8	26

#	Article	IF	CITATIONS
19	Chronic adenosine A _{2A} receptor blockade induces locomotor sensitization and potentiates striatal LTD IN GPR37â€deficient mice. Journal of Neurochemistry, 2019, 148, 796-809.	2.1	10
20	Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Hippocampus: Cannabidiol Blunts Δ9-Tetrahydrocannabinol-Induced Cognitive Impairment. Molecular Neurobiology, 2019, 56, 5382-5391.	1.9	47
21	New ionic targets of 3,3′,5′-triiodothyronine at the plasma membrane of rat Sertoli cells. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 748-759.	1.4	7
22	Behavioral control by striatal adenosine A _{2A} â€dopamine D ₂ receptor heteromers. Genes, Brain and Behavior, 2018, 17, e12432.	1.1	27
23	Antipsychotic-Like Efficacy of Dopamine D2 Receptor-Biased Ligands is Dependent on Adenosine A2A Receptor Expression. Molecular Neurobiology, 2018, 55, 4952-4958.	1.9	28
24	PBF509, an Adenosine A2A Receptor Antagonist With Efficacy in Rodent Models of Movement Disorders. Frontiers in Pharmacology, 2018, 9, 1200.	1.6	18
25	Dopamine receptor heteromers: biasing antipsychotics. Future Medicinal Chemistry, 2018, 10, 2675-2677.	1.1	2
26	Triglyceride Form of Docosahexaenoic Acid Mediates Neuroprotection in Experimental Parkinsonism. Frontiers in Neuroscience, 2018, 12, 604.	1.4	26
27	Neuromodulatory Effects of Guanine-Based Purines in Health and Disease. Frontiers in Cellular Neuroscience, 2018, 12, 376.	1.8	49
28	Pridopidine Reverses Phencyclidine-Induced Memory Impairment. Frontiers in Pharmacology, 2018, 9, 338.	1.6	9
29	Metabotropic glutamate type 5 receptor requires contactin-associated protein 1 to control memory formation. Human Molecular Genetics, 2018, 27, 3528-3541.	1.4	4
30	Functional coupling of GABA _{A/B} receptors and the channel TRPV4 mediates rapid progesterone signaling in the oviduct. Science Signaling, 2018, 11, .	1.6	13
31	Remote control of movement disorders using a photoactive adenosine A2A receptor antagonist. Journal of Controlled Release, 2018, 283, 135-142.	4.8	31
32	Effects of the Dopamine Stabilizer, Pridopidine, on Basal and Phencyclidine-Induced Locomotion: Role of Dopamine D2 and Sigma-1 Receptors. CNS and Neurological Disorders - Drug Targets, 2018, 17, 522-527.	0.8	3
33	Adenosine A2A-dopamine D2 receptor heteromers operate striatal function: impact on Parkinson's disease pharmacotherapeutics. Neural Regeneration Research, 2018, 13, 241.	1.6	6
34	Locus coeruleus at asymptomatic early and middle Braak stages of neurofibrillary tangle pathology. Neuropathology and Applied Neurobiology, 2017, 43, 373-392.	1.8	72
35	Parkinson's disease-associated GPR37 receptor regulates cocaine-mediated synaptic depression in corticostriatal synapses. Neuroscience Letters, 2017, 638, 162-166.	1.0	13
36	The Parkinson's disease-associated GPR37 receptor interacts with striatal adenosine A2A receptor controlling its cell surface expression and function in vivo. Scientific Reports, 2017, 7, 9452.	1.6	39

Victor Fernandez-Dueñas

#	Article	IF	CITATIONS
37	Angiotensin II type 1/adenosine A 2A receptor oligomers: a novel target for tardive dyskinesia. Scientific Reports, 2017, 7, 1857.	1.6	11
38	Exploring Drug-Receptor Interaction Kinetics: Lessons from a Sigma-1 Receptor Transmembrane Biosensor. Frontiers in Pharmacology, 2017, 8, 4.	1.6	2
39	Antiparkinsonian Efficacy of Guanosine in Rodent Models of Movement Disorder. Frontiers in Pharmacology, 2017, 8, 700.	1.6	20
40	Synthesis and Characterization of a New Bivalent Ligand Combining Caffeine and Docosahexaenoic Acid. Molecules, 2017, 22, 366.	1.7	5
41	Adenosine A1-A2A Receptor Heteromer as a Possible Target for Early-Onset Parkinson's Disease. Frontiers in Neuroscience, 2017, 11, 652.	1.4	10
42	Optical control of pain in vivo with a photoactive mGlu5 receptor negative allosteric modulator. ELife, 2017, 6, .	2.8	48
43	Adenosine Receptors Oligomers in Parkinson's Disease. , 2017, , 215-230.		0
44	Formalin Murine Model of Pain. Bio-protocol, 2017, 7, e2628.	0.2	19
45	The Adenosinergic System in the Neurobiology of Schizophrenia: Prospective Adenosine Receptor–Based Pharmacotherapy. , 2017, , 405-419.		0
46	The Guanine-Based Purinergic System: The Tale of An Orphan Neuromodulation. Frontiers in Pharmacology, 2016, 7, 158.	1.6	45
47	Investigation of LRRC8-Mediated Volume-Regulated Anion Currents in Xenopus Oocytes. Biophysical Journal, 2016, 111, 1429-1443.	0.2	94
48	Fluorescent Ligands and TR-FRET to Study Receptor–Receptor Interactions in the Brain. Neuromethods, 2016, , 99-107.	0.2	0
49	Co-immunoprecipitation from Brain. Neuromethods, 2016, , 19-29.	0.2	6
50	GPCR-Mediated MAPK/ERK Cascade Activation in Mouse Striatal Slices. Neuromethods, 2016, , 465-472.	0.2	0
51	Untangling dopamine-adenosine receptor assembly in experimental parkinsonism. DMM Disease Models and Mechanisms, 2015, 8, 57-63.	1.2	55
52	Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells. Journal of the American Chemical Society, 2015, 137, 15892-15898.	6.6	109
53	Visualizing G Proteinâ€Coupled Receptorâ€Receptor Interactions in Brain Using Proximity Ligation In Situ Assay. Current Protocols in Cell Biology, 2015, 67, 17.17.17.17.16.	2.3	25
54	Lighting up G protein-coupled purinergic receptors with engineered fluorescent ligands. Neuropharmacology, 2015, 98, 58-67.	2.0	20

#	Article	IF	CITATIONS
55	The role of parkinson's diseaseâ€associated receptor <scp>GPR</scp> 37 in the hippocampus: functional interplay with the adenosinergic system. Journal of Neurochemistry, 2015, 134, 135-146.	2.1	48
56	Adenosine A2A receptor-mediated control of pilocarpine-induced tremulous jaw movements is Parkinson's disease-associated GPR37 receptor-dependent. Behavioural Brain Research, 2015, 288, 103-106.	1.2	15
57	GPCR Oligomerization Analysis by Means of BRET and dFRAP. Methods in Molecular Biology, 2015, 1272, 133-141.	0.4	10
58	Adenosine in the Neurobiology of Schizophrenia: Potential Adenosine Receptor-Based Pharmacotherapy. , 2015, , 375-388.		1
59	Predicting the Antinociceptive Efficacy of σ ₁ Receptor Ligands by a Novel Receptor Fluorescence Resonance Energy Transfer (FRET) Based Biosensor. Journal of Medicinal Chemistry, 2014, 57, 238-242.	2.9	20
60	Coassembly and Coupling of SK2 Channels and mGlu ₅ Receptors. Journal of Neuroscience, 2014, 34, 14793-14802.	1.7	20
61	Portraying G Protein-Coupled Receptors with Fluorescent Ligands. ACS Chemical Biology, 2014, 9, 1918-1928.	1.6	30
62	Uncovering Caffeine's Adenosine A _{2A} Receptor Inverse Agonism in Experimental Parkinsonism. ACS Chemical Biology, 2014, 9, 2496-2501.	1.6	37
63	Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand. Bioconjugate Chemistry, 2014, 25, 1847-1854.	1.8	44
64	Striatal adenosine A2A receptor expression is controlled by S-adenosyl-L-methionine-mediated methylation. Purinergic Signalling, 2014, 10, 523-528.	1.1	15
65	Deciphering G Protein-Coupled Receptor Biology with Fluorescence-based Methods. Current Pharmaceutical Biotechnology, 2014, 15, 962-970.	0.9	1
66	The Parkinson's diseaseâ€associated <scp>GPR</scp> 37 receptorâ€mediated cytotoxicity is controlled by its intracellular cysteineâ€rich domain. Journal of Neurochemistry, 2013, 125, 362-372.	2.1	28
67	Dopamine D2 receptor-mediated modulation of adenosine A2A receptor agonist binding within the A2AR/D2R oligomer framework. Neurochemistry International, 2013, 63, 42-46.	1.9	24
68	Synergistic Interaction Between Fentanyl and a Tramadol:Paracetamol Combination on the Inhibition of Nociception in Mice. Journal of Pharmacological Sciences, 2012, 118, 299-302.	1.1	7
69	Fluorescence resonance energy transfer-based technologies in the study of protein–protein interactions at the cell surface. Methods, 2012, 57, 467-472.	1.9	43
70	Molecular determinants of A _{2A} R–D ₂ R allosterism: role of the intracellular loop 3 of the D ₂ R. Journal of Neurochemistry, 2012, 123, 373-384.	2.1	53
71	G protein-coupled receptor oligomerization and brain integration: Focus on adenosinergic transmission. Brain Research, 2012, 1476, 86-95.	1.1	30
72	Transcriptional profiling of striatal neurons in response to single or concurrent activation of dopamine D2, adenosine A2A and metabotropic glutamate type 5 receptors: Focus on beta-synuclein expression. Gene, 2012, 508, 199-205.	1.0	5

#	Article	IF	CITATIONS
73	Adenosine receptor containing oligomers: Their role in the control of dopamine and glutamate neurotransmission in the brain. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1245-1255.	1.4	67
74	Caffeine improves attention deficit in neonatal 6-OHDA lesioned rats, an animal model of attention deficit hyperactivity disorder (ADHD). Neuroscience Letters, 2011, 494, 44-48.	1.0	28
75	Molecular mechanisms of MLC1 and GLIALCAM mutations in megalencephalic leukoencephalopathy with subcortical cysts. Human Molecular Genetics, 2011, 20, 3266-3277.	1.4	80
76	Fentanyl–trazodone–paracetamol triple drug combination: Multimodal analgesia in a mouse model of visceral pain. Pharmacology Biochemistry and Behavior, 2011, 98, 331-336.	1.3	14
77	Chapter 5. Oligomerization of G Protein-coupled Receptors: Insights from Fluorescent and Luminescent-based Methods. RSC Drug Discovery Series, 2011, , 90-110.	0.2	О
78	An Update on Adenosine A2A Receptors as Drug Target in Parkinson's Disease. CNS and Neurological Disorders - Drug Targets, 2011, 10, 659-669.	0.8	22
79	Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends in Biotechnology, 2010, 28, 407-415.	4.9	83
80	Histamine H3 receptor activation potentiates peripheral opioid-mediated antinociception: Substance P role in peripheral inflammation in mice. European Journal of Pharmacology, 2010, 638, 72-77.	1.7	8
81	Evidence for oligomerization between GABA _B receptors and GIRK channels containing the GIRK1 and GIRK3 subunits. European Journal of Neuroscience, 2010, 32, 1265-1277.	1.2	52
82	Adenosine receptors interacting proteins (ARIPs): Behind the biology of adenosine signaling. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 9-20.	1.4	61
83	Adenosine–Dopamine Interactions in the Pathophysiology and Treatment of CNS Disorders. CNS Neuroscience and Therapeutics, 2010, 16, e18-42.	1.9	141
84	G protein-coupled receptor oligomerization for what?. Journal of Receptor and Signal Transduction Research, 2010, 30, 322-330.	1.3	22
85	The association of metabotropic glutamate receptor type 5 with the neuronal Ca ²⁺ â€binding protein 2 modulates receptor function. Journal of Neurochemistry, 2009, 111, 555-567.	2.1	27
86	Adjuvant effect of caffeine on acetylsalicylic acid anti-nociception: Prostaglandin E2 synthesis determination in carrageenan-induced peripheral inflammation in rat. European Journal of Pain, 2008, 12, 157-163.	1.4	25
87	Tolerance to the Antinociceptive and Antiexudative Effects of Morphine in a Murine Model of Peripheral Inflammation. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 360-368.	1.3	30
88	Synergistic interaction between fentanyl and the histamine H3 receptor agonist R-(α)-methylhistamine, on the inhibition of nociception and plasma extravasation in mice. European Journal of Pharmacology, 2006, 541, 53-56.	1.7	7