Thilo Hagen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1357452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Galactose 1â€phosphate accumulates to high levels in galactoseâ€treated cells due to low GALT activity and absence of product inhibition of GALK. Journal of Inherited Metabolic Disease, 2020, 43, 529-539.	3.6	6
2	Towards a More Meaningful Evaluation of University Lecturers. New Zealand Journal of Educational Studies, 2020, 55, 379-386.	1.1	0
3	LDB1 and the SWI/SNF complex participate in both transcriptional activation and repression by Caenorhabditis elegans BLIMP1/PRDM1. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194577.	1.9	4
4	Dronedarone-Induced Cardiac Mitochondrial Dysfunction and Its Mitigation by Epoxyeicosatrienoic Acids. Toxicological Sciences, 2018, 163, 79-91.	3.1	14
5	Regulation of the NRF2 transcription factor by andrographolide and organic extracts from plant endophytes. PLoS ONE, 2018, 13, e0204853.	2.5	21
6	Characterisation of cellular effects of Burkholderia pseudomallei Cycle inhibiting factor (Cif). Biology Open, 2018, 7, .	1.2	2
7	Activation of MAPK/ERK signaling by Burkholderia pseudomallei cycle inhibiting factor (Cif). PLoS ONE, 2017, 12, e0171464.	2.5	7
8	C. elegans miro-1 Mutation Reduces the Amount of Mitochondria and Extends Life Span. PLoS ONE, 2016, 11, e0153233.	2.5	16
9	The Role of Mitochondrial Non-Enzymatic Protein Acylation in Ageing. PLoS ONE, 2016, 11, e0168752.	2.5	25
10	Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein. Cellular Signalling, 2016, 28, 377-383.	3.6	83
11	Thioredoxin-dependent regulation of AIF-mediated DNA damage. Free Radical Biology and Medicine, 2015, 87, 125-136.	2.9	35
12	2-Deoxyglucose induces the expression of thioredoxin interacting protein (TXNIP) by increasing O-GlcNAcylation – Implications for targeting the Warburg effect in cancer cells. Biochemical and Biophysical Research Communications, 2015, 465, 838-844.	2.1	21
13	Investigating the Molecular Basis of Siah1 and Siah2 E3 Ubiquitin Ligase Substrate Specificity. PLoS ONE, 2014, 9, e106547.	2.5	17
14	A POSSIBLE APPROACH FOR ORAL DRUG DELIVERY OF NANOPARTICLES. Cosmos, 2014, 10, 13-16.	0.4	3
15	DELIVERY OF THERAPEUTIC RNAs INTO TARGET CELLS <i>IN VIVO</i> . Cosmos, 2014, 10, 3-8.	0.4	0
16	Hydrogen sulfide donors in research and drug development. MedChemComm, 2014, 5, 557-570.	3.4	84
17	Editorial — Cellular Delivery of Drugs and Nucleic Acids. Cosmos, 2014, 10, 1-1.	0.4	4
18	SAFE AND EFFICIENT REPROGRAMMING OF SOMATIC CELLS INTO STEM CELLS IN LIVING TISSUE. Cosmos, 2014, 10, 9-12.	0.4	0

THILO HAGEN

#	Article	IF	CITATIONS
19	Destabilization of CDC6 upon DNA damage is dependent on neddylation but independent of Cullin E3 ligases. International Journal of Biochemistry and Cell Biology, 2013, 45, 1489-1498.	2.8	3
20	Mechanistic target of rapamycin (mTOR) dependent regulation of thioredoxin interacting protein (TXNIP) transcription in hypoxia. Biochemical and Biophysical Research Communications, 2013, 433, 40-46.	2.1	19
21	Post-translational regulation of mTOR complex 1 in hypoxia and reoxygenation. Cellular Signalling, 2013, 25, 1235-1244.	3.6	15
22	Increased Concentrations of Fructose 2,6-Bisphosphate Contribute to the Warburg Effect in Phosphatase and Tensin Homolog (PTEN)-deficient Cells. Journal of Biological Chemistry, 2013, 288, 36020-36028.	3.4	41
23	Regulation of Cullin-RING ubiquitin ligase 1 by Spliceosome-associated protein 130 (SAP130). Biology Open, 2013, 2, 838-844.	1.2	9
24	Multiple myeloma <scp>L</scp> eu167 <scp>I</scp> le (c.499 <scp>C</scp> > <scp>A</scp>) mutation prevents <i><scp>XBP</scp>1</i> m <scp>RNA</scp> splicing. British Journal of Haematology, 2013, 161, 898-901.	2.5	24
25	mTORC1 Dependent Regulation of REDD1 Protein Stability. PLoS ONE, 2013, 8, e63970.	2.5	30
26	p21-Activated kinase interacts with Wnt signaling to regulate tissue polarity and gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15853-15858.	7.1	16
27	Oxygen versus Reactive Oxygen in the Regulation of HIF-1 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi mathvariant="bold-italic">α</mml:mi </mml:mrow>: The Balance Tips. Biochemistry Research International. 2012. 2012. 1-5.</mml:math 	3.3	84
28	Mechanism of Cullin3 E3 Ubiquitin Ligase Dimerization. PLoS ONE, 2012, 7, e41350.	2.5	23
29	Characterization of the Cullin7 E3 ubiquitin ligase — Heterodimerization of cullin substrate receptors as a novel mechanism to regulate cullin E3 ligase activity. Cellular Signalling, 2012, 24, 290-295.	3.6	19
30	A potential mechanism of metformin-mediated regulation of glucose homeostasis: Inhibition of Thioredoxin-interacting protein (Txnip) gene expression. Cellular Signalling, 2012, 24, 1700-1705.	3.6	42
31	Compound C prevents Hypoxia-Inducible Factor-1α protein stabilization by regulating the cellular oxygen availability via interaction with Mitochondrial Complex I. BMC Research Notes, 2011, 4, 117.	1.4	4
32	Neddylation-Induced Conformational Control Regulates Cullin RING Ligase Activity In Vivo. Journal of Molecular Biology, 2011, 409, 136-145.	4.2	48
33	Inhibition of Cullin RING Ligases by Cycle Inhibiting Factor: Evidence for Interference with Nedd8-Induced Conformational Control. Journal of Molecular Biology, 2011, 413, 430-437.	4.2	17
34	Regulation of Cullin RING E3 Ubiquitin Ligases by CAND1 In Vivo. PLoS ONE, 2011, 6, e16071.	2.5	24
35	Hypoxia-inducible factor independent down-regulation of thioredoxin-interacting protein in hypoxia. FEBS Letters, 2011, 585, 492-498.	2.8	20
36	Characterization of the role of COP9 signalosome in regulating cullin E3 ubiquitin ligase activity. Molecular Biology of the Cell, 2011, 22, 4706-4715.	2.1	17

Thilo Hagen

#	Article	IF	CITATIONS
37	Heteroaromatic 4-arylquinols are novel inducers of Nuclear factor-erythroid 2-related factor 2 (Nrf2). European Journal of Pharmacology, 2010, 643, 188-194.	3.5	7
38	Inhibition of Hypoxia-Inducible Factor-1α (HIF-1α) Protein Synthesis by DNA Damage Inducing Agents. PLoS ONE, 2010, 5, e10522.	2.5	48
39	Thioredoxin-interacting Protein (Txnip) Gene Expression. Journal of Biological Chemistry, 2010, 285, 25822-25830.	3.4	62
40	Stabilization of Hypoxia-inducible Factor-1α Protein in Hypoxia Occurs Independently of Mitochondrial Reactive Oxygen Species Production. Journal of Biological Chemistry, 2010, 285, 31277-31284.	3.4	154
41	Structure Activity Analysis of 2-Methoxyestradiol Analogues Reveals Targeting of Microtubules as the Major Mechanism of Antiproliferative and Proapoptotic Activity. Molecular Cancer Therapeutics, 2010, 9, 224-235.	4.1	43
42	Biochemical and cellular effects of inhibiting Nedd8 conjugation. Biochemical and Biophysical Research Communications, 2010, 398, 588-593.	2.1	21
43	Characterization of the Interaction between Latency-Associated Nuclear Antigen and Glycogen Synthase Kinase 3β. Journal of Virology, 2009, 83, 6312-6317.	3.4	6
44	Characterization of a Non-UBA Domain Missense Mutation of Sequestosome 1 (SQSTM1) in Paget's Disease of Bone. Journal of Bone and Mineral Research, 2009, 24, 632-642.	2.8	48
45	Structure–activity analysis of 2′-modified cinnamaldehyde analogues as potential anticancer agents. Biochemical and Biophysical Research Communications, 2009, 387, 741-747.	2.1	22
46	Substrate-mediated Regulation of Cullin Neddylation. Journal of Biological Chemistry, 2007, 282, 17032-17040.	3.4	78
47	Characterization of cullin-based E3 ubiquitin ligases in intact mammalian cells — Evidence for cullin dimerization. Cellular Signalling, 2007, 19, 1071-1080.	3.6	61
48	Antitumor quinols: Role of glutathione in modulating quinol-induced apoptosis and identification of putative cellular protein targets. Biochemical and Biophysical Research Communications, 2006, 346, 242-251.	2.1	18
49	Inhibition of cellular respiration by endogenously produced carbon monoxide. Journal of Cell Science, 2006, 119, 2291-2298.	2.0	119
50	FRAT1, a Substrate-specific Regulator of Glycogen Synthase Kinase-3 Activity, Is a Cellular Substrate of Protein Kinase A. Journal of Biological Chemistry, 2006, 281, 35021-35029.	3.4	15
51	Inhibition of mitochondrial respiration by the anticancer agent 2-methoxyestradiol. Biochemical and Biophysical Research Communications, 2004, 322, 923-929.	2.1	67
52	Redistribution of Intracellular Oxygen in Hypoxia by Nitric Oxide: Effect on HIF1α. Science, 2003, 302, 1975-1978.	12.6	671
53	Expression and Characterization of GSK-3 Mutants and Their Effect on β-Catenin Phosphorylation in Intact Cells. Journal of Biological Chemistry, 2002, 277, 23330-23335.	3.4	85
54	Characterisation of the phosphorylation of β-catenin at the GSK-3 priming site Ser45. Biochemical and Biophysical Research Communications, 2002, 294, 324-328.	2.1	87

Thilo Hagen

#	Article	IF	CITATIONS
55	CSK-3 inhibition by adenoviral FRAT1 overexpression is neuroprotective and induces Tau dephosphorylation and β-catenin stabilisation without elevation of glycogen synthase activity. FEBS Letters, 2001, 507, 288-294.	2.8	82
56	Uncoupling Protein-2 Negatively Regulates Insulin Secretion and Is a Major Link between Obesity, β Cell Dysfunction, and Type 2 Diabetes. Cell, 2001, 105, 745-755.	28.9	867
57	Cloning and functional characterization of an uncoupling protein homolog in hummingbirds. Physiological Genomics, 2001, 5, 137-145.	2.3	79
58	Energy Metabolism in Uncoupling Protein 3 Gene Knockout Mice. Journal of Biological Chemistry, 2000, 275, 16258-16266.	3.4	592
59	Chimeric Proteins between UCP1 and UCP3: The Middle Third of UCP1 Is Necessary and Sufficient for Activation by Fatty Acids. Biochemical and Biophysical Research Communications, 2000, 276, 642-648.	2.1	27
60	Urinary Lactate Excretion to Monitor the Efficacy of Treatment of Type I Glycogen Storage Disease. Molecular Genetics and Metabolism, 2000, 70, 189-195.	1.1	20
61	Quantification of glutaric acid by isotope dilution mass spectrometry for patients with glutaric acidemia type I: selected ion monitoring vs. selected ion storage. Clinica Chimica Acta, 1999, 282, 185-195.	1.1	Ο
62	A GC/MS/MS screening method for multiple organic acidemias from urine specimens. Clinica Chimica Acta, 1999, 283, 77-88.	1.1	47
63	Assessment of uncoupling activity of uncoupling protein 3 using a yeast heterologous expression system. FEBS Letters, 1999, 449, 129-134.	2.8	98