
Jian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1357211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Year-Round Storage Operation of Three Major Agricultural Crop Residue Biomasses by Performing Dry Acid Pretreatment at Regional Collection Depots. ACS Sustainable Chemistry and Engineering, 2021, 9, 4722-4734.	3.2	10
2	Visualizing plant cell wall changes proves the superiority of hydrochloric acid over sulfuric acid catalyzed l ³ -valerolactone pretreatment. Chemical Engineering Journal, 2021, 412, 128660.	6.6	26
3	Itaconic acid fermentation using activated charcoal-treated corn stover hydrolysate and process evaluation based on Aspen plus model. Biomass Conversion and Biorefinery, 2020, 10, 463-470.	2.9	20
4	Heterozygous diploid structure of Amorphotheca resinae ZN1 contributes efficient biodetoxification on solid pretreated corn stover. Biotechnology for Biofuels, 2019, 12, 126.	6.2	24
5	Facilitation of <scp>l</scp> -Lactic Acid Fermentation by Lignocellulose Biomass Rich in Vitamin B Compounds. Journal of Agricultural and Food Chemistry, 2019, 67, 7082-7086.	2.4	23
6	A preliminary study on l-lysine fermentation from lignocellulose feedstock and techno-economic evaluation. Bioresource Technology, 2019, 271, 196-201.	4.8	24
7	Improved cellulosic ethanol production from corn stover with a low cellulase input using a β-glucosidase-producing yeast following a dry biorefining process. Bioprocess and Biosystems Engineering, 2019, 42, 297-304.	1.7	8
8	Dry biorefining maximizes the potentials of simultaneous saccharification and coâ€fermentation for cellulosic ethanol production. Biotechnology and Bioengineering, 2018, 115, 60-69.	1.7	69
9	Lignocellulose Pretreatment Using Acid as Catalyst. , 2018, , 1-14.		5
10	Elevating fermentation yield of cellulosic lactic acid in calcium lactate form from corn stover feedstock. Industrial Crops and Products, 2018, 126, 415-420.	2.5	21
11	Lower pressure heating steam is practical for the distributed dry dilute sulfuric acid pretreatment. Bioresource Technology, 2017, 238, 744-748.	4.8	5
12	Reduction of Reactor Corrosion by Eliminating Liquid-Phase Existence in Dry Dilute Acid Pretreatment of Corn Stover. Energy & Fuels, 2017, 31, 6140-6144.	2.5	8
13	<i>In</i> - <i>Situ</i> Vacuum Distillation of Ethanol Helps To Recycle Cellulase and Yeast during SSF of Delignified Corncob Residues. ACS Sustainable Chemistry and Engineering, 2017, 5, 11676-11685.	3.2	12
14	Antibacterial Peptide Secreted by <i>Pediococcus acidilactici</i> Enables Efficient Cellulosic Open <scp>l</scp> -Lactic Acid Fermentation. ACS Sustainable Chemistry and Engineering, 2017, 5, 9254-9262.	3.2	16
15	Acceleration of biodetoxification on dilute acid pretreated lignocellulose feedstock by aeration and the consequent ethanol fermentation evaluation. Biotechnology for Biofuels, 2016, 9, 19.	6.2	89
16	Engineering wild-type robust Pediococcus acidilactici strain for high titer l- and d-lactic acid production from corn stover feedstock. Journal of Biotechnology, 2016, 217, 112-121.	1.9	68
17	Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess and Biosystems Engineering, 2016, 39, 133-140.	1.7	201
18	On-site measurement and modeling of rheological property of corn stover hydrolysate at high solids content. Biochemical Engineering Journal, 2016, 107, 61-65.	1.8	18

JIAN ZHANG

#	Article	IF	CITATIONS
19	Long term storage of dilute acid pretreated corn stover feedstock and ethanol fermentability evaluation. Bioresource Technology, 2016, 201, 355-359.	4.8	30
20	Rheology evolution and CFD modeling of lignocellulose biomass during extremely high solids content pretreatment. Biochemical Engineering Journal, 2016, 105, 412-419.	1.8	23
21	Cellulosic Ethanol Fermentation Using Saccharomyces cerevisiae Seeds Cultured by Pretreated Corn Stover Material. Applied Biochemistry and Biotechnology, 2015, 175, 3173-3183.	1.4	11
22	High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain. Bioresource Technology, 2015, 189, 399-404.	4.8	54
23	High tolerance and physiological mechanism of <i>Zymomonas mobilis</i> to phenolic inhibitors in ethanol fermentation of corncob residue. Biotechnology and Bioengineering, 2015, 112, 1770-1782.	1.7	67
24	Reactors for High Solid Loading Pretreatment of Lignocellulosic Biomass. Advances in Biochemical Engineering/Biotechnology, 2015, 152, 75-90.	0.6	10
25	High titer l -lactic acid production from corn stover with minimum wastewater generation and techno-economic evaluation based on Aspen plus modeling. Bioresource Technology, 2015, 198, 803-810.	4.8	69
26	Simultaneous saccharification and co-fermentation of dry diluted acid pretreated corn stover at high dry matter loading: Overcoming the inhibitors by non-tolerant yeast. Bioresource Technology, 2015, 198, 39-46.	4.8	49
27	Helically agitated mixing in dry dilute acid pretreatment enhances the bioconversion of corn stover into ethanol. Biotechnology for Biofuels, 2014, 7, 1.	6.2	504
28	Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues. Bioresource Technology, 2014, 157, 6-13.	4.8	64
29	An alternative feedstock of corn meal for industrial fuel ethanol production: Delignified corncob residue. Bioresource Technology, 2014, 167, 555-559.	4.8	21
30	Rheological characterization and CFD modeling of corn stover–water mixing system at high solids loading for dilute acid pretreatment. Biochemical Engineering Journal, 2014, 90, 324-332.	1.8	29
31	De-ashing treatment of corn stover improves the efficiencies of enzymatic hydrolysis and consequent ethanol fermentation. Bioresource Technology, 2014, 169, 552-558.	4.8	36
32	Dry dilute acid pretreatment by co-currently feeding of corn stover feedstock and dilute acid solution without impregnation. Bioresource Technology, 2014, 158, 360-364.	4.8	86
33	Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1. Biotechnology for Biofuels, 2014, 7, 51.	6.2	100
34	Process development of short-chain polyols synthesis from corn stover by combination of enzymatic hydrolysis and catalytic hydrogenolysis. Biotechnology Reports (Amsterdam, Netherlands), 2014, 3, 15-20.	2.1	10
35	Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2. Bioresource Technology, 2013, 135, 481-489.	4.8	84
36	Simultaneous Saccharification and Ethanol Fermentation of Corn Stover at High Temperature and High Solids Loading by a Thermotolerant Strain Saccharomyces cerevisiae DQ1. Bioenergy Research, 2012, 5, 1020-1026.	2.2	39

JIAN ZHANG

#	Article	IF	CITATIONS
37	A modified method for calculating practical ethanol yield at high lignocellulosic solids content and high ethanol titer. Bioresource Technology, 2012, 116, 74-79.	4.8	40
38	Utilization of dry distiller's grain and solubles as nutrient supplement in the simultaneous saccharification and ethanol fermentation at high solids loading of corn stover. Biotechnology Letters, 2011, 33, 273-276.	1.1	12
39	Dry pretreatment of lignocellulose with extremely low steam and water usage for bioethanol production. Bioresource Technology, 2011, 102, 4480-4488.	4.8	131
40	Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor. Biotechnology and Bioengineering, 2010, 105, 718-728.	1.7	217
41	Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation. Biotechnology for Biofuels, 2010, 3, 26.	6.2	167