
Dana Kralisch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1356736/publications.pdf Version: 2024-02-01

DANA KRALISCH

#	Article	IF	CITATIONS
1	Nanocellulose as a natural source for groundbreaking applications in materials science: Today's state. Materials Today, 2018, 21, 720-748.	14.2	625
2	Novel Process Windows for Enabling, Accelerating, and Uplifting Flow Chemistry. ChemSusChem, 2013, 6, 746-789.	6.8	521
3	Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chemistry, 2009, 11, 1948.	9.0	264
4	Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. International Journal of Pharmaceutics, 2014, 471, 45-55.	5.2	205
5	Rules and benefits of Life Cycle Assessment in green chemical process and synthesis design: a tutorial review. Green Chemistry, 2015, 17, 123-145.	9.0	201
6	The Biopolymer Bacterial Nanocellulose as Drug Delivery System: Investigation of Drug Loading and Release using the Model Protein Albumin. Journal of Pharmaceutical Sciences, 2013, 102, 579-592.	3.3	163
7	Evaluating the greenness of alternative reaction media. Green Chemistry, 2008, 10, 1170.	9.0	107
8	Energetic, environmental and economic balances: Spice up your ionic liquid research efficiency. Green Chemistry, 2005, 7, 301.	9.0	92
9	White biotechnology for cellulose manufacturing—The HoLiR concept. Biotechnology and Bioengineering, 2010, 105, 740-747.	3.3	89
10	Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 112, 164-176.	4.3	86
11	Sustainability through green processing – novel process windows intensify micro and milli process technologies. Energy and Environmental Science, 2008, 1, 467.	30.8	83
12	Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles. Cellulose, 2013, 20, 771-783.	4.9	83
13	Tailor-made material characteristics of bacterial cellulose for drug delivery applications in dentistry. Carbohydrate Polymers, 2019, 207, 1-10.	10.2	79
14	Life Cycle Analysis within Pharmaceutical Process Optimization and Intensification: Case Study of Active Pharmaceutical Ingredient Production. ChemSusChem, 2014, 7, 3521-3533.	6.8	74
15	Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. Journal of Materials Science: Materials in Medicine, 2015, 26, 245.	3.6	70
16	Assessment of the ecological potential of microreaction technology. Chemical Engineering Science, 2007, 62, 1094-1100.	3.8	60
17	Transfer of the Epoxidation of Soybean Oil from Batch to Flow Chemistry Guided by Cost and Environmental Issues. ChemSusChem, 2012, 5, 300-311.	6.8	55
18	Process design accompanying life cycle management and risk analysis as a decision support tool for sustainable biodiesel production. Green Chemistry, 2013, 15, 463-477.	9.0	52

DANA KRALISCH

#	Article	IF	CITATIONS
19	Process control and scale-up of modified bacterial cellulose production for tailor-made anti-inflammatory drug delivery systems. Carbohydrate Polymers, 2020, 236, 116062.	10.2	49
20	Bacterial nanocellulose: the future of controlled drug delivery?. Therapeutic Delivery, 2017, 8, 753-761.	2.2	47
21	Thermosensitive hydrogels as sustained drug delivery system for CTLA-4 checkpoint blocking antibodies. Journal of Controlled Release, 2020, 323, 1-11.	9.9	47
22	Implementing objectives of sustainability into ionic liquids research and development. Green Chemistry, 2007, 9, 1308.	9.0	45
23	In Situ Synthesis of Photocatalytically Active Hybrids Consisting of Bacterial Nanocellulose and Anatase Nanoparticles. Langmuir, 2012, 28, 13518-13525.	3.5	45
24	Opportunities of Bacterial Cellulose to Treat Epithelial Tissues. Current Drug Targets, 2019, 20, 808-822.	2.1	41
25	Environmentally Benign Microreaction Process Design by Accompanying (Simplified) Life Cycle Assessment. Chemical Engineering and Technology, 2009, 32, 1757-1765.	1.5	39
26	Microwaveâ€Assisted Kolbeâ€Schmitt Synthesis Using Ionic Liquids or Dimcarb as Reactive Solvents. Chemical Engineering and Technology, 2009, 32, 1730-1738.	1.5	37
27	Bacterial nanocellulose with a shape-memory effect as potential drug delivery system. RSC Advances, 2014, 4, 57173-57184.	3.6	37
28	Bacterial nanocellulose stimulates mesenchymal stem cell expansion and formation of stable collagen-I networks as a novel biomaterial in tissue engineering. Scientific Reports, 2018, 8, 9401.	3.3	35
29	Decision support towards agile eco-design of microreaction processes by accompanying (simplified) life cycle assessment. Green Chemistry, 2011, 13, 1694.	9.0	32
30	Cost Analysis of a Commercial Manufacturing Process of a Fine Chemical Compound Using Micro Process Engineering. Chimia, 2006, 60, 611-617.	0.6	30
31	Agile Green Process Design for the Intensified Kolbe–Schmitt Synthesis by Accompanying (Simplified) Life Cycle Assessment. Environmental Science & Technology, 2013, 47, 5362-5371.	10.0	30
32	Eco-efficiency Analysis for Intensified Production of an Active Pharmaceutical Ingredient: A Case Study. Organic Process Research and Development, 2014, 18, 1326-1338.	2.7	28
33	Loading of bacterial nanocellulose hydrogels with proteins using a high-speed technique. Carbohydrate Polymers, 2014, 106, 410-413.	10.2	26
34	Immobilization of plasmids in bacterial nanocellulose as gene activated matrix. Carbohydrate Polymers, 2019, 209, 62-73.	10.2	23
35	The need for innovation management and decision guidance in sustainable process design. Journal of Cleaner Production, 2018, 172, 2374-2388.	9.3	22
36	Green catalysis by nanoparticulate catalysts developed for flow processing? Case study of glucose hydrogenation. RSC Advances, 2015, 5, 15898-15908.	3.6	20

DANA KRALISCH

#	Article	IF	CITATIONS
37	Bacterial nanocellulose as novel carrier for intestinal epithelial cells in drug delivery studies. Materials Science and Engineering C, 2020, 109, 110613.	7.3	18
38	Development and characterization of bacterial nanocellulose loaded with Boswellia serrata extract containing nanoemulsions as natural dressing for skin diseases. International Journal of Pharmaceutics, 2020, 587, 119635.	5.2	18
39	Removal and renewal of catalytic coatings from lab- and pilot-scale microreactors, accompanied by life cycle assessment and cost analysis. Green Chemistry, 2012, 14, 3034.	9.0	17
40	Risk and life cycle assessment of nanoparticles for medical applications prepared using safe- and benign-by-design gas-phase syntheses. Green Chemistry, 2020, 22, 814-827.	9.0	16
41	Life Cycle Cost Analysis as Decision Support Tool in Chemical Process Development. ChemBioEng Reviews, 2014, 1, 50-56.	4.4	14
42	Tailor-made microdevices for maximizing process intensification and productivity through advanced heating. Chemical Engineering Journal, 2011, 167, 510-518.	12.7	12
43	Modified Bacterial Cellulose Dressings to Treat Inflammatory Wounds. Nanomaterials, 2020, 10, 2508.	4.1	12
44	Controlled Release of the α-Tocopherol-Derived Metabolite α-13′-Carboxychromanol from Bacterial Nanocellulose Wound Cover Improves Wound Healing. Nanomaterials, 2021, 11, 1939.	4.1	12
45	Toward a Framework for Resource Efficiency Evaluation in Industry: Recommendations for Research and Innovation Projects. Resources, 2017, 6, 5.	3.5	11
46	Overcoming the hydrophilicity of bacterial nanocellulose: Incorporation of the lipophilic coenzyme Q10 using lipid nanocarriers for dermal applications. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 106-112.	4.3	9
47	Bacterial Cellulose—Adaptation of a Nature-Identical Material to the Needs of Advanced Chronic Wound Care. Pharmaceuticals, 2022, 15, 683.	3.8	9
48	Bacterial Cellulose as Drug Delivery System for Optimizing Release of Immune Checkpoint Blocking Antibodies. Pharmaceutics, 2022, 14, 1351.	4.5	8
49	Evaluation of different micromixers by CFD simulations for the anionic polymerisation of styrene. Green Processing and Synthesis, 2012, 1, .	3.4	5
50	Bridging sustainability and intensified flow processing within process design for sustainable future factories. Green Processing and Synthesis, 2013, 2, .	3.4	4
51	Sustainability lessons from practice: how flow intensification can trigger sustainability and modular plant technology in EU projects. Asia-Pacific Journal of Chemical Engineering, 2015, 10, 483-500.	1.5	3
52	Life Cycle Cost Analysis for Decision Support in Chemical Process Development. Chemie-Ingenieur-Technik, 2013, 85, 447-454.	0.8	1
53	Entwicklung nachhaltiger chemischer Prozesse - Vom Konzept zur Umsetzung. Chemie-Ingenieur-Technik, 2010, 82, 1435-1435.	0.8	0
54	Das HoLiR-Konzept zur Gewinnung bakteriell synthetisierter Nanocellulose. Chemie-Ingenieur-Technik, 2010, 82, 1516-1516.	0.8	0

#	Article	IF	CITATIONS
55	Laboratory profile of the research group "Green Process Design and Evaluation―at the Friedrich Schiller University Jena. Green Processing and Synthesis, 2012, 1, .	3.4	0
56	Life Cycle Assessment of Microreaction Technology Versus Batch Technology - A Case Study. , 2013, , 295-307.		0
57	10. From green chemistry principles in flow chemistry towards green flow process design in the holistic viewpoint. , 2014, , 283-312.		0