Changbum Jo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1356330/publications.pdf

Version: 2024-02-01

279487 264894 3,103 43 23 42 citations h-index g-index papers 46 46 46 3171 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Engineering micropore walls of beta zeolites by post-functionalization for CO2 adsorption performance screening under humid conditions. Chemical Engineering Journal, 2022, 427, 131461.	6.6	15
2	Tailoring the CO2 selective adsorption properties of MOR zeolites by post functionalization. Journal of CO2 Utilization, 2022, 62, 102064.	3.3	6
3	Dynamic adsorption/desorption of p-xylene on nanomorphic MFI zeolites: Effect of zeolite crystal thickness and mesopore architecture. Journal of Hazardous Materials, 2021, 403, 123659.	6.5	23
4	Nickel Nanoparticles Supported on Nonreducible Mesoporous Materials: Effects of Framework Types on the Catalytic Decomposition of Methane. Bulletin of the Korean Chemical Society, 2021, 42, 168-171.	1.0	1
5	3D graphene-like zeolite-templated carbon with hierarchical structures as a high-performance adsorbent for volatile organic compounds. Chemical Engineering Journal, 2021, 409, 128076.	6.6	27
6	Oxidative Dehydrogenation of Ethane with CO ₂ as a Soft Oxidant over a PtCe Bimetallic Catalyst. ACS Catalysis, 2021, 11, 9221-9232.	5 . 5	24
7	PtZn Intermetallic Compound Nanoparticles in Mesoporous Zeolite Exhibiting High Catalyst Durability for Propane Dehydrogenation. ACS Catalysis, 2021, 11, 9233-9241.	5.5	46
8	Ni Nanoparticles on Ni Core/N-Doped Carbon Shell Heterostructures for Electrocatalytic Oxygen Evolution. ACS Applied Nano Materials, 2021, 4, 9418-9429.	2.4	21
9	Postâ€Synthesis Functionalization Enables Fineâ€Tuning the Molecularâ€Sieving Properties of Zeolites for Light Olefin/Paraffin Separations. Advanced Materials, 2021, 33, e2105398.	11.1	20
10	Postsynthetic Modification of Zeolite Internal Surface for Sustainable Capture of Volatile Organic Compounds under Humid Conditions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53925-53934.	4.0	10
11	Postâ€Synthesis Functionalization Enables Fineâ€Tuning the Molecularâ€Sieving Properties of Zeolites for Light Olefin/Paraffin Separations (Adv. Mater. 48/2021). Advanced Materials, 2021, 33, 2170376.	11.1	О
12	Soft-to-hard consecutive templating one-pot route from metal nitrate/phenol resin/surfactant to mesoporous metal oxides with enhanced thermal stability. Microporous and Mesoporous Materials, 2020, 293, 109767.	2.2	10
13	Coordination structure of Jacobsen catalyst with N-modified graphene and their electrocatalytic properties for reducing oxygen molecules. Applied Catalysis B: Environmental, 2020, 263, 118337.	10.8	13
14	Rare-earth–platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature, 2020, 585, 221-224.	13.7	233
15	Effect of Mesoporosity on Methanolâ€toâ€Olefin Reactions over Organosilaneâ€Directed Mesoporous <scp>SSZ</scp> â€13 Zeolites. Bulletin of the Korean Chemical Society, 2020, 41, 595-598.	1.0	4
16	Ethane Dehydrogenation with CO2 as a soft oxidant over a Cr-TUD-1 catalyst. Journal of CO2 Utilization, 2020, 39, 101184.	3.3	21
17	Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 2020, 49, 8584-8686.	18.7	610
18	Catalytic Dehydration of Ethanol over WOx Nanoparticles Supported on MFI (Mobile Five) Zeolite Nanosheets. Catalysts, 2019, 9, 670.	1.6	5

#	Article	lF	CITATIONS
19	Sulfonium-based organic structure-directing agents for microporous aluminophosphate synthesis. Microporous and Mesoporous Materials, 2019, 280, 75-81.	2.2	5
20	Oxygen activation on the interface between Pt nanoparticles and mesoporous defective TiO2 during CO oxidation. Journal of Chemical Physics, 2019, 151, 234716.	1.2	37
21	Highly monodisperse supported metal nanoparticles by basic ammonium functionalization of mesopore walls for industrially relevant catalysis. Chemical Communications, 2017, 53, 3810-3813.	2.2	14
22	Tomographic imaging of pore networks and connectivity of surfactant-directed mesoporous zeolites. Journal of Materials Chemistry A, 2017, 5, 11086-11093.	5.2	28
23	Synthesis of mesoporous zeolites in fluoride media with structure-directing multiammonium surfactants. Microporous and Mesoporous Materials, 2017, 239, 19-27.	2.2	33
24	Mesoporous In-Sn binary oxides of crystalline framework with extended compositional variation. Microporous and Mesoporous Materials, 2016, 228, 14-21.	2.2	0
25	Anatase TiO2 nanosheets with surface acid sites for Friedel–Crafts alkylation. Microporous and Mesoporous Materials, 2016, 222, 185-191.	2.2	28
26	Structural and physicochemical effects of MFI zeolite nanosheets for the selective synthesis of propylene from methanol. Microporous and Mesoporous Materials, 2016, 222, 1-8.	2.2	36
27	Synthesis of Silicate Zeolite Analogues Using Organic Sulfonium Compounds as Structureâ€Directing Agents. Angewandte Chemie - International Edition, 2015, 54, 12805-12808.	7.2	24
28	Mesoporous titania with anatase framework synthesized using polyphenolic structure-directing agent: Synthesis domain and catalytic metal loading. Microporous and Mesoporous Materials, 2015, 212, 117-124.	2.2	9
29	Acid catalytic function of mesopore walls generated by MFI zeolite desilication in comparison with external surfaces of MFI zeolite nanosheet. Applied Catalysis A: General, 2015, 492, 68-75.	2.2	25
30	Mesopore expansion of surfactant-directed nanomorphic zeolites with trimethylbenzene. Microporous and Mesoporous Materials, 2014, 194, 83-89.	2.2	8
31	Annulation of Phenols: Catalytic Behavior of Conventional and 2 D Zeolites. ChemCatChem, 2014, 6, 1919-1927.	1.8	21
32	Randomâ€Graft Polymerâ€Directed Synthesis of Inorganic Mesostructures with Ultrathin Frameworks. Angewandte Chemie - International Edition, 2014, 53, 5117-5121.	7.2	36
33	MFI zeolite nanosponges possessing uniform mesopores generated by bulk crystal seeding in the hierarchical surfactant-directed synthesis. Chemical Communications, 2014, 50, 4175-4177.	2.2	84
34	Bulk crystal seeding in the generation of mesopores by organosilane surfactants in zeolite synthesis. Journal of Materials Chemistry A, 2014, 2, 11905-11912.	5.2	50
35	Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking. Journal of Catalysis, 2013, 300, 70-80.	3.1	132
36	The effect of MFI zeolite lamellar and related mesostructures on toluene disproportionation and alkylation. Catalysis Science and Technology, 2013, 3, 2119.	2.1	74

#	Article	IF	CITATIONS
37	Microporous Aluminophosphate Nanosheets and Their Nanomorphic Zeolite Analogues Tailored by Hierarchical Structure-Directing Amines. Journal of the American Chemical Society, 2013, 135, 8806-8809.	6.6	111
38	Capping with Multivalent Surfactants for Zeolite Nanocrystal Synthesis. Angewandte Chemie - International Edition, 2013, 52, 10014-10017.	7.2	85
39	Zeolite nanosheet of a single-pore thickness generated by a zeolite-structure-directing surfactant. Journal of Materials Chemistry, 2012, 22, 4637.	6.7	86
40	MFI Titanosilicate Nanosheets with Single-Unit-Cell Thickness as an Oxidation Catalyst Using Peroxides. ACS Catalysis, 2011 , 1 , 901 - 907 .	5.5	206
41	Mesoporous Polymeric Support Retaining High Catalytic Activity of Polyoxotungstate for Liquidâ€Phase Olefin Epoxidation using H ₂ O ₂ . ChemCatChem, 2011, 3, 1435-1438.	1.8	32
42	Directing Zeolite Structures into Hierarchically Nanoporous Architectures. Science, 2011, 333, 328-332.	6.0	750
43	Syntheses of high quality KIT-6 and SBA-15 mesoporous silicas using low-cost water glass, through rapid quenching of silicate structure in acidic solution. Microporous and Mesoporous Materials, 2009, 124, 45-51.	2.2	70