List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1356245/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                     | IF         | CITATIONS          |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|
| 1  | Fluid phase equilibria for the CO2 +Â2,3-dimethylbutane binary system from 291.9ÂK to 373.1ÂK. Journal of<br>Supercritical Fluids, 2022, 179, 105387.                                                                                                       | 1.6        | 6                  |
| 2  | Use of 300,000 pseudoâ€experimental data over 1800 pure fluids to assess the performance of four cubic<br>equations of state: <scp>SRK</scp> , <scp>R</scp> , <scp><i>tc</i>â€RK</scp> , and<br><scp><i>tc</i>â€PR</scp> . AICHE Journal, 2022, 68, e17518. | 1.8        | 16                 |
| 3  | The impressive impact of including enthalpy and heat capacity of mixing data when parameterising equations of state. Application to the development of the E-PPR78 (Enhanced-Predictive-Peng-Robinson-78) model Fluid Phase Equilibria, 2022, 560, 113456.  | 1.4        | 9                  |
| 4  | Assessing the performance of nonâ€associating <scp>SAFT</scp> â€type equations of state to reproduce<br>vapor pressure, liquid density, enthalpy of vaporization, and liquid heat capacity data of 1800 pure<br>fluids. AICHE Journal, 2022, 68, .          | 1.8        | 13                 |
| 5  | High-Pressure Phase Equilibria Measurements of the Carbon Dioxide + Cycloheptane Binary System.<br>Journal of Chemical & Engineering Data, 2022, 67, 176-181.                                                                                               | 1.0        | 2                  |
| 6  | A comparative study of COSMO-based and equation-of-state approaches for the prediction of solvation energies based on the compsol databank. Fluid Phase Equilibria, 2022, 561, 113540.                                                                      | 1.4        | 2                  |
| 7  | Development and characterization of electrospun curcumin-loaded antimicrobial nanofibrous membranes. Textile Reseach Journal, 2021, 91, 1478-1485.                                                                                                          | 1.1        | 6                  |
| 8  | Good reporting practice for thermophysical and thermochemical property measurements (IUPAC) Tj ETQq0 0 0 r                                                                                                                                                  | gBT /Overl | ock 10 Tf 50<br>24 |
| 9  | Thermo-chemical engines: Unexploited high-potential energy converters. Energy Conversion and<br>Management, 2021, 229, 113685.                                                                                                                              | 4.4        | 10                 |
| 10 | SAFT and cubic EoS: Type of deviation from ideality naturally predicted in the absence of BIPs.<br>Application to the modelling of athermal mixtures. Fluid Phase Equilibria, 2021, 533, 112924.                                                            | 1.4        | 10                 |
| 11 | Development of a Detailed Kinetic Model for the Oxidation of <i>n</i> -Butane in the Liquid Phase.<br>Journal of Physical Chemistry B, 2021, 125, 6955-6967.                                                                                                | 1.2        | 8                  |
| 12 | Assessment of the Perturbed Chain-Statistical Associating Fluid Theory Equation of State against a Benchmark Database of High-Quality Binary-System Data. Industrial & Engineering Chemistry Research, 2021, 60, 8935-8946.                                 | 1.8        | 20                 |
|    | Experimental determination and modelling of high-pressure phase behavior for the high-system CO2                                                                                                                                                            |            |                    |

| 13 | Experimental determination and modelling of high-pressure phase behavior for the binary system CO2<br>+Âcyclooctane. Journal of Supercritical Fluids, 2021, 174, 105249.                                                                                                                                                                                                                                          | 1.6 | 2  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 14 | Design of Promising Working Fluids for Emergent Combined Cooling, Heating, and Power (CCHP)<br>Systems. ACS Sustainable Chemistry and Engineering, 2021, 9, 11807-11824.                                                                                                                                                                                                                                          | 3.2 | 6  |
| 15 | Assessment of organic Rankine cycle configurations for solar polygeneration orientated to electricity production and desalination. Applied Thermal Engineering, 2021, 195, 116983.                                                                                                                                                                                                                                | 3.0 | 13 |
| 16 | Revisiting the Entropy-Scaling Concept for Shear-Viscosity Estimation from Cubic and SAFT Equations of State: Application to Pure Fluids in Gas, Liquid and Supercritical States. Industrial & Engineering Chemistry Research, 2021, 60, 12719-12739.                                                                                                                                                             | 1.8 | 26 |
| 17 | Phase equilibria of mixtures involving fatty acid ethyl esters and fat alcohols between 4 and 27ÅkPa for bioproduct production. Fuel, 2021, 306, 121304.                                                                                                                                                                                                                                                          | 3.4 | 2  |
| 18 | What Is the Optimal Activity Coefficient Model To Be Combined with the<br><i>translated</i> – <i>consistent</i> Peng–Robinson Equation of State through Advanced Mixing<br>Rules? Cross-Comparison and Grading of the Wilson, UNIQUAC, and NRTL <i>a</i> <sup>E</sup> Models<br>against a Benchmark Database Involving 200 Binary Systems. Industrial & Engineering Chemistry<br>Research, 2021, 60, 17228-17247. | 1.8 | 12 |

| #  | Article                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Note on the inconsistent definition assigned in the literature to the heat capacity of the so-called<br>"equilibrium hydrogen―mixture. Fluid Phase Equilibria, 2020, 504, 112325.                                                                                                                              | 1.4 | 4         |
| 20 | 4-Chloro-2-nitroaniline Solubility in Several Pure Solvents: Determination, Modeling, and Solvent<br>Effect Analysis. Journal of Chemical & Engineering Data, 2020, 65, 222-232.                                                                                                                               | 1.0 | 18        |
| 21 | Benchmark Database Containing Binary-System-High-Quality-Certified Data for Cross-Comparing<br>Thermodynamic Models and Assessing Their Accuracy. Industrial & Engineering Chemistry<br>Research, 2020, 59, 14981-15027.                                                                                       | 1.8 | 32        |
| 22 | Parameterization of SAFT Models: Analysis of Different Parameter Estimation Strategies and<br>Application to the Development of a Comprehensive Database of PC-SAFT Molecular Parameters.<br>Journal of Chemical & Engineering Data, 2020, 65, 5920-5932.                                                      | 1.0 | 20        |
| 23 | Search for the optimal expression of the volumetric dependence of the attractive contribution in cubic equations of state. Fluid Phase Equilibria, 2020, 522, 112750.                                                                                                                                          | 1.4 | 16        |
| 24 | A Predictive Equation of State to Perform an Extending Screening of Working Fluids for Power and Refrigeration Cycles. , 2020, , .                                                                                                                                                                             |     | 0         |
| 25 | Accurate quantum-corrected cubic equations of state for helium, neon, hydrogen, deuterium and their mixtures. Fluid Phase Equilibria, 2020, 524, 112790.                                                                                                                                                       | 1.4 | 14        |
| 26 | A new technique for the synthesis of lanthanum substituted nickel cobaltite nanocomposites for the photo catalytic degradation of organic dyes in wastewater. Arabian Journal of Chemistry, 2020, 13, 6341-6347.                                                                                               | 2.3 | 6         |
| 27 | Vapor–Liquid Equilibria of the CH <sub>4</sub> + CO <sub>2</sub> + H <sub>2</sub> S Ternary System<br>with Two Different Global Compositions: Experiments and Modeling. Journal of Chemical &<br>Engineering Data, 2020, 65, 1802-1813.                                                                        | 1.0 | 8         |
| 28 | Thermophysical properties of switchable-hydrophilicity solvent systems: N,N-Dipropyl-1-propanamine, water and carbon dioxide. Journal of Chemical Thermodynamics, 2020, 143, 106049.                                                                                                                           | 1.0 | 1         |
| 29 | Stationary gas turbines: an exergetic approach to part load operation. Oil and Gas Science and Technology, 2020, 75, 10.                                                                                                                                                                                       | 1.4 | 0         |
| 30 | Modelling of multi-component droplet evaporation under cryogenic conditions. Oil and Gas Science and Technology, 2020, 75, 81.                                                                                                                                                                                 | 1.4 | 3         |
| 31 | Taking Another Look at the van der Waals Equation of State–Almost 150 Years Later. Journal of<br>Chemical & Engineering Data, 2019, 64, 4619-4637.                                                                                                                                                             | 1.0 | 48        |
| 32 | <i>I</i> -PC-SAFT: An Industrialized Version of the Volume-Translated PC-SAFT Equation of State for<br>Pure Components, Resulting from Experience Acquired All through the Years on the Parameterization<br>of SAFT-Type and Cubic Models. Industrial & Engineering Chemistry Research, 2019, 58, 20815-20827. | 1.8 | 44        |
| 33 | Exergetic analysis of an LPG production plant using HYSYS software. Energy Procedia, 2019, 157, 1385-1390.                                                                                                                                                                                                     | 1.8 | 9         |
| 34 | From ethyl biodiesel to biolubricants: Options for an Indian mustard integrated biorefinery toward a green and circular economy. Industrial Crops and Products, 2019, 137, 597-614.                                                                                                                            | 2.5 | 30        |
| 35 | Application of the Corresponding-State Law to the Parametrization of Statistical Associating Fluid<br>Theory (SAFT)-Type Models: Generation and Use of "Generalized Charts― Industrial & Engineering<br>Chemistry Research, 2019, 58, 9127-9139.                                                               | 1.8 | 13        |
| 36 | Can we safely predict solvation Gibbs energies of pure and mixed solutes with a cubic equation of state?. Pure and Applied Chemistry, 2019, 91, 1295-1307.                                                                                                                                                     | 0.9 | 7         |

| #  | Article                                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Updated versions of the generalized Soave α-function suitable for the Redlich-Kwong and<br>Peng-Robinson equations of state. Fluid Phase Equilibria, 2019, 485, 264-269.                                                                                                                                           | 1.4 | 58        |
| 38 | A thermal and thermodynamic code for the computation of Boil-Off Gas – Industrial applications of LNG carrier. Cryogenics, 2019, 99, 105-113.                                                                                                                                                                      | 0.9 | 30        |
| 39 | Sizing and operating units for the purification and compression of CO2-based streams: The impact of thermodynamic model accuracy. Journal of Supercritical Fluids, 2018, 140, 336-347.                                                                                                                             | 1.6 | 7         |
| 40 | Thermodynamic study of binary systems containing sulphur dioxide and nitric oxide: Measurements<br>and modelling. Fluid Phase Equilibria, 2018, 461, 84-100.                                                                                                                                                       | 1.4 | 7         |
| 41 | Modelling the thermodynamics of air-component mixtures (N2, O2 and Ar): Comparison and performance analysis of available models. Fluid Phase Equilibria, 2018, 458, 278-287.                                                                                                                                       | 1.4 | 5         |
| 42 | Densities, Apparent Molar Volume, Expansivities, Hepler's Constant, and Isobaric Thermal Expansion<br>Coefficients of the Binary Mixtures of Piperazine with Water, Methanol, and Acetone at<br><i>T</i> = 293.15 to 328.15 K. International Journal of Chemical Engineering, 2018, 2018, 1-10.                    | 1.4 | 15        |
| 43 | Inert and Reactive Working Fluids for Closed Power Cycles: Present Knowledge, Applications and Open Researches. , 2018, , .                                                                                                                                                                                        |     | 1         |
| 44 | Analysis of the Combinations of Property Data That Are Suitable for a Safe Estimation of Consistent<br>Twu α-Function Parameters: Updated Parameter Values for the Translated-Consistent <i>tc</i> -PR and<br><i>tc</i> -RK Cubic Equations of State. Journal of Chemical & Engineering Data, 2018, 63, 3980-3988. | 1.0 | 32        |
| 45 | Superstructure optimization (MINLP) within ProSimPlus Simulator. Computer Aided Chemical Engineering, 2018, , 767-772.                                                                                                                                                                                             | 0.3 | 1         |
| 46 | Measurement and prediction of multi-property data of CO2-N2-O2-CH4 mixtures with the<br>"Peng-RobinsonÂ+Âresidual Helmholtz energy-based―model. Fluid Phase Equilibria, 2017, 437, 166-180.                                                                                                                        | 1.4 | 16        |
| 47 | Optimizing Thermodynamic Models: The Relevance of Molar Fraction Uncertainties. Journal of Chemical & Engineering Data, 2017, 62, 825-832.                                                                                                                                                                         | 1.0 | 9         |
| 48 | Modeling the Thermodynamics of Fluids Treated by CO <sub>2</sub> Capture Processes with<br>Peng–Robinson + Residual Helmholtz Energy-Based Mixing Rules. Industrial & Engineering<br>Chemistry Research, 2017, 56, 2259-2276.                                                                                      | 1.8 | 17        |
| 49 | Phase equilibrium data and modeling of ethylic biodiesel, with application to a non-edible vegetable oil. Fuel, 2017, 203, 633-641.                                                                                                                                                                                | 3.4 | 9         |
| 50 | On the imperative need to use a consistent $\hat{I}_{\pm}$ -function for the prediction of pure-compound supercritical properties with a cubic equation of state. Fluid Phase Equilibria, 2017, 445, 45-53.                                                                                                        | 1.4 | 70        |
| 51 | Selection of a Proper Equation of State for the Modeling of a Supercritical CO <sub>2</sub> Brayton<br>Cycle: Consequences on the Process Design. Industrial & Engineering Chemistry Research, 2017, 56,<br>6841-6853.                                                                                             | 1.8 | 24        |
| 52 | E -PPR78: A proper cubic EoS for modelling fluids involved in the design and operation of carbon<br>dioxide capture and storage (CCS) processes. International Journal of Greenhouse Gas Control, 2017,<br>56, 126-154.                                                                                            | 2.3 | 44        |
| 53 | Estimation of Solvation Quantities from Experimental Thermodynamic Data: Development of the<br>Comprehensive CompSol Databank for Pure and Mixed Solutes. Journal of Physical and Chemical<br>Reference Data, 2017, 46, .                                                                                          | 1.9 | 39        |
| 54 | Simulations of the Impact of Co-injected Gases on CO2 Storage, the SIGARRR Project: Processes and Geochemical Approaches for Gas-water-Salt Interactions Modeling. Energy Procedia, 2017, 114, 3322-3334.                                                                                                          | 1.8 | 5         |

4

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The design of CO 2 -based working fluids for high-temperature heat source power cycles. Energy<br>Procedia, 2017, 129, 947-954.                                                                                                                                                  | 1.8 | 8         |
| 56 | Solubility and freezing point depression (FPD) measurements of Na-1-ethanethiolate,<br>Na-1-propanethiolate, Na-2-propanethiolate, Na-1-butanethiolate, and Na-2-methyl-2-propanethiolate<br>salts in pure water. Chemical Engineering Communications, 2017, 204, 1225-1236.     | 1.5 | 0         |
| 57 | Prediction of Thermodynamic Properties of Alkyne-Containing Mixtures with the <i>E</i> -PPR78 Model.<br>Industrial & Engineering Chemistry Research, 2017, 56, 8143-8157.                                                                                                        | 1.8 | 28        |
| 58 | Phase equilibrium of CCS mixtures: Equation of state modeling and Monte Carlo simulation. Journal of Supercritical Fluids, 2017, 119, 169-202.                                                                                                                                   | 1.6 | 26        |
| 59 | Fluid-phase-equilibrium prediction of fluorocompound-containing binary systems with the predictive<br>E -PPR78 model. International Journal of Refrigeration, 2017, 73, 65-90.                                                                                                   | 1.8 | 36        |
| 60 | Teaching the Concept of Gibbs Energy Minimization through Its Application to Phase-Equilibrium Calculation. Journal of Chemical Education, 2016, 93, 1569-1577.                                                                                                                  | 1.1 | 10        |
| 61 | Editor's Preface for the Special Issue Dedicated to the 2015 JETC. International Journal of Thermophysics, 2016, 37, 1.                                                                                                                                                          | 1.0 | 0         |
| 62 | Incorporation of a volume translation in an equation of state for fluid mixtures: which combining rule? which effect on properties of mixing?. Fluid Phase Equilibria, 2016, 427, 414-420.                                                                                       | 1.4 | 63        |
| 63 | A consistency test for α-functions of cubic equations of state. Fluid Phase Equilibria, 2016, 427, 513-538.                                                                                                                                                                      | 1.4 | 116       |
| 64 | Development of the translated-consistent tc-PR and tc-RK cubic equations of state for a safe and accurate prediction of volumetric, energetic and saturation properties of pure compounds in the sub-<br>and super-critical domains. Fluid Phase Equilibria, 2016, 429, 301-312. | 1.4 | 107       |
| 65 | Application of PPR78 Thermodynamic Framework as a Fill Method with a Semiempirical Mixing Rule for<br>Mixtures Involved in Gas Processing. Journal of Chemical & Engineering Data, 2016, 61, 4164-4171.                                                                          | 1.0 | 3         |
| 66 | Improving Students' Understanding of the Connections between the Concepts of Real-Gas Mixtures,<br>Gas Ideal-Solutions, and Perfect-Gas Mixtures. Journal of Chemical Education, 2016, 93, 2040-2045.                                                                            | 1.1 | 6         |
| 67 | VLE properties of CO2 – Based binary systems containing N2, O2 and Ar: Experimental measurements and modelling results with advanced cubic equations of state. Fluid Phase Equilibria, 2016, 428, 18-31.                                                                         | 1.4 | 47        |
| 68 | Integrating support vector regression with genetic algorithm for CO2-oil minimum miscibility pressure (MMP) in pure and impure CO2 streams. Fuel, 2016, 182, 550-557.                                                                                                            | 3.4 | 62        |
| 69 | Design of Hybrid Fuels Using a Modeling Study of the Miscibility of Ethanol–Biodiesel–Hydrocarbon<br>Systems. International Journal of Thermophysics, 2016, 37, 1.                                                                                                               | 1.0 | 1         |
| 70 | A five-parameter empirical model for correlating the solubility of solid compounds in supercritical carbon dioxide. Fluid Phase Equilibria, 2016, 411, 74-80.                                                                                                                    | 1.4 | 66        |
| 71 | Note on the properties altered by application of a Péneloux–type volume translation to an equation of state. Fluid Phase Equilibria, 2016, 419, 88-95.                                                                                                                           | 1.4 | 101       |
| 72 | Analysis and prediction of the alpha-function parameters used in cubic equations of state. Chemical Engineering Science, 2015, 126, 584-603.                                                                                                                                     | 1.9 | 30        |

| #  | Article                                                                                                                                                                                                                            | IF               | CITATIONS                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|
| 73 | Predicting Binary-Interaction Parameters of Cubic Equations of State for Petroleum Fluids Containing<br>Pseudo-components. Industrial & Engineering Chemistry Research, 2015, 54, 2816-2824.                                       | 1.8              | 38                       |
| 74 | Extension of the E-PPR78 equation of state to predict fluid phase equilibria of natural gases<br>containing carbon monoxide, helium-4 and argon. Journal of Petroleum Science and Engineering, 2015,<br>133, 744-770.              | 2.1              | 29                       |
| 75 | Addition of the Sulfur Dioxide Group (SO <sub>2</sub> ), the Oxygen Group (O <sub>2</sub> ), and the<br>Nitric Oxide Group (NO) to the <i>E</i> -PPR78 Model. Industrial & Engineering Chemistry Research,<br>2015, 54, 9494-9504. | 1.8              | 23                       |
| 76 | Simulations of the Impact of Co-injected Gases on CO2 Storage, the SIGARRR Project: First Results on Water-gas Interactions Modeling. Energy Procedia, 2014, 63, 3160-3171.                                                        | 1.8              | 10                       |
| 77 | Experimental measurements and correlation of vapor–liquid equilibrium and critical data for the CO<br>2 Å+ÂR1234yf and CO 2 Â+ÂR1234ze(E) binary mixtures. International Journal of Refrigeration, 2014, 47,<br>141-152.           | 1.8              | 72                       |
| 78 | Solubility of carbon dioxide, nitrous oxide and methane in ionic liquids at pressures close to atmospheric. Fluid Phase Equilibria, 2014, 372, 26-33.                                                                              | 1.4              | 45                       |
| 79 | General reflection on critical negative azeotropy and upgrade of the Bancroft's rule with application to the acetone+chloroform binary system. Journal of Supercritical Fluids, 2014, 94, 17-29.                                   | 1.6              | 14                       |
| 80 | Editor's preface for the special issue "Romanian International Conference on Chemistry and Chemical<br>Engineering― Open Chemistry, 2014, 12, 747-748.                                                                             | 1.0              | 0                        |
| 81 | Development of a Predictive Equation of State for CO <sub>2</sub> + Ethyl Ester Mixtures Based on<br>Critical Points Measurements. Journal of Chemical & Engineering Data, 2014, 59, 3205-3219.                                    | 1.0              | 28                       |
| 82 | Experimental Measurement and Modeling of Phase Diagrams of Binary Systems Encountered in the<br>Gasoline Desulfurization Process Using Ionic Liquids. Journal of Chemical & Engineering Data,<br>2014, 59, 603-612.                | 1.0              | 26                       |
| 83 | Comments on "Computational procedure for thermodynamic minimum miscibility pressure of reservoir oil― Fuel, 2013, 107, 882-883.                                                                                                    | 3.4              | 1                        |
| 84 | Novel Methodology for Analysis and Evaluation of SAFT-Type Equations of State. Industrial &<br>Engineering Chemistry Research, 2013, 52, 13875-13885.                                                                              | 1.8              | 51                       |
| 85 | Classification of global fluid-phase equilibrium behaviors in binary systems. Chemical Engineering<br>Research and Design, 2013, 91, 1807-1839.                                                                                    | 2.7              | 141                      |
| 86 | Solubility of CO2 in 1-butyl-3-methylimidazolium diethylene-glycolmonomethylethersulfate and<br>trihexyl(tetradecyl)phosphonium dodecyl-benzenesulfonate. Fluid Phase Equilibria, 2013, 354, 191-198.                              | 1.4              | 18                       |
| 87 | Predicting the Phase Equilibria, Critical Phenomena, and Mixing Enthalpies of Binary Aqueous Systems<br>Containing Alkanes, Cycloalkanes, Aromatics, Alkenes, and Gases (N <sub>2</sub> , CO <sub>2</sub> ,) Tj ETQq1              | 1 0,78431<br>1.8 | l4 <sub>g</sub> gBT /Ove |
| 88 | Enthalpy and Heat Capacity Changes on Mixing: Fundamental Aspects and Prediction by Means of the PPR78 Cubic Equation of State. Energy & amp; Fuels, 2013, 27, 7150-7178.                                                          | 2.5              | 57                       |
| 89 | A simple and unified algorithm to solve fluid phase equilibria using either the gamma–phi or the phi–phi approach for binary and ternary mixtures. Computers and Chemical Engineering, 2013, 50, 139-151.                          | 2.0              | 22                       |
| 90 | Reliability of the correlation allowing the kij to switch from an alpha function to another one in hydrogen-containing systems. Fluid Phase Equilibria, 2013, 338, 23-29.                                                          | 1.4              | 19                       |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Role of Impurities on CO2 Injection: Experimental and Numerical Simulations of Thermodynamic<br>Properties of Water-salt-gas Mixtures (CO2 + Co-injected Gases) Under Geological Storage<br>Conditions. Energy Procedia, 2013, 37, 3638-3645.                     | 1.8 | 21        |
| 92  | Prediction of the phase behavior of alkene-containing binary systems with the PPR78 model. Fluid<br>Phase Equilibria, 2013, 354, 212-235.                                                                                                                         | 1.4 | 43        |
| 93  | Quest for an efficient binary working mixture for an absorption-demixing heat transformer. Energy, 2013, 55, 594-609.                                                                                                                                             | 4.5 | 9         |
| 94  | Validation of a New Apparatus Using the Dynamic Method for Determining the Critical Properties of Binary Gas/Gas Mixtures. Journal of Chemical & Engineering Data, 2013, 58, 671-676.                                                                             | 1.0 | 33        |
| 95  | Phase equilibria in hydrogen-containing binary systems modeled with the Peng–Robinson equation of state and temperature-dependent binary interaction parameters calculated through a group-contribution method. Journal of Supercritical Fluids, 2013, 75, 58-71. | 1.6 | 73        |
| 96  | Modeling phase diagrams of systems containing ionic liquids used in different applications. MATEC Web of Conferences, 2013, 3, 01014.                                                                                                                             | 0.1 | 0         |
| 97  | The thermodynamics of alcohols-hydrocarbons mixtures. MATEC Web of Conferences, 2013, 3, 01018.                                                                                                                                                                   | 0.1 | Ο         |
| 98  | Experimental determination of the critical locus of binary systems containing CO2and an ethyl ester.<br>MATEC Web of Conferences, 2013, 3, 01020.                                                                                                                 | 0.1 | 0         |
| 99  | Ethanol and Distillate Blends: A Thermodynamic Approach to Miscibility Issues: Part 3 — Generalization to Other Alcohols (Methanol, Isopropanol and 1-Butanol). , 2012, , .                                                                                       |     | Ο         |
| 100 | Discussion around the paradigm of ideal mixtures with emphasis on the definition of the property changes on mixing. Chemical Engineering Science, 2012, 82, 319-333.                                                                                              | 1.9 | 27        |
| 101 | Addition of the sulfhydryl group (SH) to the PPR78 model: Estimation of missing group-interaction parameters for systems containing mercaptans and carbon dioxide or nitrogen or methane, from newly published data. Fluid Phase Equilibria, 2012, 334, 197-203.  | 1.4 | 30        |
| 102 | Fluid Phase Equilibria Correlation for Carbon Dioxide +1-Heptanol System with Cubic Equations of State. Industrial & Engineering Chemistry Research, 2012, 51, 11284-11293.                                                                                       | 1.8 | 16        |
| 103 | Testing the ability of various equations of state to reproduce high-pressure isotherm crossings in the<br>(α, P) plane. Fluid Phase Equilibria, 2012, 327, 45-57.                                                                                                 | 1.4 | 8         |
| 104 | Modeling the Solubility of Carbon Dioxide in Imidazolium-Based Ionic Liquids with the PC-SAFT Equation of State. Journal of Physical Chemistry B, 2012, 116, 14375-14388.                                                                                         | 1.2 | 112       |
| 105 | Thermodynamic Models for the Prediction of Petroleum-Fluid Phase Behaviour. , 2012, , .                                                                                                                                                                           |     | 4         |
| 106 | Are safe results obtained when SAFT equations are applied to ordinary chemicals? Part 2: Study of solid–liquid equilibria in binary systems. Fluid Phase Equilibria, 2012, 318, 61-76.                                                                            | 1.4 | 39        |
| 107 | Validation of a new apparatus using the dynamic method for determining the critical properties of binary mixtures containing CO2 and a n-alkane. Fluid Phase Equilibria, 2012, 325, 66-70.                                                                        | 1.4 | 19        |
| 108 | Comments on "PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage:<br>Review of available experimental data and theoretical models― Applied Energy, 2012, 93, 750-752.                                                                | 5.1 | 1         |

| #   | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | An improved crude oil atmospheric distillation process for energy integration: Part I: Energy and exergy analyses of the process when a flash is installed in the preheating train. Applied Thermal Engineering, 2012, 32, 125-131.                                              | 3.0 | 32        |
| 110 | An improved crude oil atmospheric distillation process for energy integration: Part II: New approach for energy saving by use of residual heat. Applied Thermal Engineering, 2012, 40, 132-144.                                                                                  | 3.0 | 16        |
| 111 | Validation of a new apparatus using the dynamic and static methods for determining the critical properties of pure components and mixtures. Journal of Supercritical Fluids, 2012, 68, 25-30.                                                                                    | 1.6 | 17        |
| 112 | Deep Fuels Desulfurization and Denitrogenation Using 1-Butyl-3-methylimidazolium<br>Trifluoromethanesulfonate. Energy & Fuels, 2011, 25, 1559-1565.                                                                                                                              | 2.5 | 82        |
| 113 | Prediction of Partition Coefficients of Organic Compounds in Ionic Liquids Using a<br>Temperature-Dependent Linear Solvation Energy Relationship with Parameters Calculated through a<br>Group Contribution Method. Journal of Chemical & Engineering Data, 2011, 56, 3598-3606. | 1.0 | 32        |
| 114 | Extraction of Thiophene or Pyridine from n-Heptane Using Ionic Liquids. Gasoline and Diesel<br>Desulfurization. Industrial & Engineering Chemistry Research, 2011, 50, 2296-2306.                                                                                                | 1.8 | 198       |
| 115 | Extraction of <i>n</i> -Alcohols from <i>n</i> -Heptane Using Ionic Liquids Journal of Chemical &<br>Engineering Data, 2011, 56, 3873-3880.                                                                                                                                      | 1.0 | 38        |
| 116 | Péneloux's mixing rules: 25 years ago and now. Fluid Phase Equilibria, 2011, 308, 164-167.                                                                                                                                                                                       | 1.4 | 10        |
| 117 | Activity Coefficients at Infinite Dilution of Organic Compounds in Four New Imidazolium-Based Ionic<br>Liquids. Journal of Chemical & Engineering Data, 2011, 56, 3106-3114.                                                                                                     | 1.0 | 81        |
| 118 | Ethanol-Hydrocarbon Blend Vapor Prediction. Journal of Engineering for Gas Turbines and Power, 2010, 132, .                                                                                                                                                                      | 0.5 | 5         |
| 119 | Ethanol and Distillate Blends: A Thermodynamic Approach to Miscibility Issues. , 2010, , .                                                                                                                                                                                       |     | 0         |
| 120 | Partition Coefficients of Organic Compounds in New Imidazolium and Tetralkylammonium Based Ionic<br>Liquids Using Inverse Gas Chromatography. Journal of Chemical & Engineering Data, 2010, 55,<br>234-242.                                                                      | 1.0 | 148       |
| 121 | Relationship between the binary interaction parameters (kij) of the Peng–Robinson and those of the<br>Soave–Redlich–Kwong equations of state: Application to the definition of the PR2SRK model. Fluid<br>Phase Equilibria, 2010, 295, 26-37.                                    | 1.4 | 138       |
| 122 | Are safe results obtained when the PC-SAFT equation of state is applied to ordinary pure chemicals?.<br>Fluid Phase Equilibria, 2010, 295, 76-92.                                                                                                                                | 1.4 | 126       |
| 123 | Predicting the phase equilibria of synthetic petroleum fluids with the PPR78 approach. AICHE Journal, 2010, 56, 3225-3235.                                                                                                                                                       | 1.8 | 160       |
| 124 | Estimation of the environmental impact of a petrochemical process using coupled LCA and exergy analysis. Resources, Conservation and Recycling, 2010, 54, 291-298.                                                                                                               | 5.3 | 44        |
| 125 | (Vapor+liquid) equilibria of binary mixtures containing light alcohols and ionic liquids. Journal of<br>Chemical Thermodynamics, 2010, 42, 177-181.                                                                                                                              | 1.0 | 26        |
| 126 | Comments on "Application of predictive equations of state in calculating natural gas phase envelopes and critical points― Journal of Natural Gas Science and Engineering, 2010, 2, 150-151.                                                                                      | 2.1 | 8         |

| #   | Article                                                                                                                                                                                                                                                           | IF                | CITATIONS          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 127 | Life Cycle Assessment Applied to Naphtha Catalytic Reforming. Oil and Gas Science and Technology, 2010, 65, 793-805.                                                                                                                                              | 1.4               | 17                 |
| 128 | Study of Ether-, Alcohol-, or Cyano-Functionalized Ionic Liquids Using Inverse Gas Chromatography.<br>Journal of Chemical & Engineering Data, 2010, 55, 2434-2443.                                                                                                | 1.0               | 88                 |
| 129 | Prediction of Partition Coefficients of Organic Compounds in Ionic Liquids: Use of a Linear Solvation<br>Energy Relationship with Parameters Calculated through a Group Contribution Method. Industrial<br>& Engineering Chemistry Research, 2010, 49, 3883-3892. | 1.8               | 67                 |
| 130 | Reducing of Nitrous Oxide Emissions Using Ionic Liquids. Journal of Physical Chemistry B, 2010, 114, 8199-8206.                                                                                                                                                   | 1.2               | 47                 |
| 131 | Extraction of Benzene or Thiophene from <i>n</i> -Heptane Using Ionic Liquids. NMR and Thermodynamic Study. Journal of Physical Chemistry B, 2010, 114, 4600-4608.                                                                                                | 1.2               | 141                |
| 132 | High Carbon Dioxide Solubilities in Imidazolium-Based Ionic Liquids and in Poly(ethylene glycol)<br>Dimethyl Ether. Journal of Physical Chemistry B, 2010, 114, 12908-12913.                                                                                      | 1.2               | 122                |
| 133 | Partition coefficients of organic compounds in new imidazolium based ionic liquids using inverse gas chromatography. Journal of Chromatography A, 2009, 1216, 4775-4786.                                                                                          | 1.8               | 75                 |
| 134 | Can cubic equations of state be recast in the virial form?. Fluid Phase Equilibria, 2009, 282, 38-50.                                                                                                                                                             | 1.4               | 14                 |
| 135 | Activity Coefficients at Infinite Dilution of Organic Compounds in 1-Butyl-3-methylimidazolium<br>Tetrafluoroborate Using Inverse Gas Chromatography. Journal of Chemical & Engineering Data,<br>2009, 54, 90-101.                                                | 1.0               | 86                 |
| 136 | Ethanol-Hydrocarbon Blend Vapor Prediction. , 2009, , .                                                                                                                                                                                                           |                   | 1                  |
| 137 | High-pressure phase behaviour of the binary system {CO2+cis-decalin} from (292.75 to 373.75)K. Journal of Chemical Thermodynamics, 2008, 40, 1358-1363.                                                                                                           | 1.0               | 15                 |
| 138 | Addition of the sulfhydryl group (–SH) to the PPR78 model (predictive 1978, Peng–Robinson EOS with) Tj ET<br>Thermodynamics, 2008, 40, 1331-1341.                                                                                                                 | Qq0 0 0 r<br>1.0  | gBT /Overloo<br>59 |
| 139 | Phase equilibria measurements of CO2+methyl cyclopentane and CO2+isopropyl cyclohexane binary mixtures at elevated pressures. Journal of Supercritical Fluids, 2008, 44, 155-163.                                                                                 | 1.6               | 38                 |
| 140 | Predicting the phase equilibria of CO2+hydrocarbon systems with the PPR78 model (PR EOS and kij) Tj ETQq0 0 (                                                                                                                                                     | O rgBT /Ov        | erlock 10 Tf       |
| 141 | Addition of the Hydrogen Sulfide Group to the PPR78 Model (Predictive 1978, Peng–Robinson Equation) Tj ETC                                                                                                                                                        | Qq1 1 0.78<br>1.8 | 34314 rgBT<br>77   |
| 142 | Activity Coefficients at Infinite Dilution of Organic Compounds in<br>1-(Meth)acryloyloxyalkyl-3-methylimidazolium Bromide Using Inverse Gas Chromatography. Journal of<br>Physical Chemistry B, 2008, 112, 3773-3785.                                            | 1.2               | 79                 |
| 143 | Use of the PPR78 Model To Predict New Equilibrium Data of Binary Systems Involving Hydrocarbons<br>and Nitrogen. Comparison with Other GCEOS. Industrial & Engineering Chemistry Research, 2008,<br>47, 7483-7489.                                                | 1.8               | 66                 |
| 144 | Comments on "Solubility of CO2, N2, and CO2 + N2 Gas Mixtures in Isooctane―(Zhang, J. S.; Lee, S.; Lee, J.)<br>2001-2001.                                                                                                                                         | Tj ETQq0<br>1.0   | 0 0 rgBT /Ov<br>2  |

| #   | Article                                                                                                                                                                                                                                                                                                                               | IF               | CITATIONS           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 145 | Addition of the Nitrogen Group to the PPR78 Model (Predictive 1978, Peng Robinson EOS with) Tj ETQq1 1 0.784                                                                                                                                                                                                                          | 314 rgBT<br>1.8  | /Overlock 10<br>82  |
| 146 | Bubble and Dew Points of Carbon Dioxide + a Five-Component Synthetic Mixture:  Experimental Data<br>and Modeling with the PPR78 Model. Journal of Chemical & Engineering Data, 2007, 52, 1851-1855.                                                                                                                                   | 1.0              | 26                  |
| 147 | Measurement of activity coefficients at infinite dilution in 1-hexadecyl-3-methylimidazolium tetrafluoroborate ionic liquid. Journal of Chemical Thermodynamics, 2007, 39, 1144-1150.                                                                                                                                                 | 1.0              | 95                  |
| 148 | Thermodynamic Properties of Mixtures Containing Ionic Liquids:  Activity Coefficients at Infinite<br>Dilution of Organic Compounds in 1-Propyl Boronic Acid-3-Alkylimidazolium Bromide and<br>1-Propenyl-3-alkylimidazolium Bromide Using Inverse Gas Chromatography. Journal of Chemical &<br>Engineering Data, 2006, 51, 1274-1279. | 1.0              | 64                  |
| 149 | Possible Existence of a Negative (Positive) Homogeneous Azeotrope When the Binary Mixture Exhibits<br>Positive (Negative) Deviations from Ideal Solution Behavior (That is, When gE is Positive (Negative)).<br>Industrial & Engineering Chemistry Research, 2006, 45, 8217-8222.                                                     | 1.8              | 14                  |
| 150 | Extension of the PPR78 model (Predictive 1978, Peng–Robinson EOS with temperature dependent kij) Tj ETQqC<br>Phase Equilibria, 2006, 243, 9-28.                                                                                                                                                                                       | 0 0 rgBT<br>1.4  | /Overlock 10<br>91  |
| 151 | Accurate measurements of thermodynamic properties of solutes in ionic liquids using inverse gas chromatography. Journal of Chromatography A, 2006, 1102, 256-267.                                                                                                                                                                     | 1.8              | 137                 |
| 152 | Solubility of CO2 in branched alkanes in order to extend the PPR78 model (predictive 1978,) Tj ETQq0 0 0 rgBT /C                                                                                                                                                                                                                      | verlock 1<br>1.4 | 0 Tf 50 467<br>75   |
| 153 | Comments on "bubble temperature measurements on the binary mixtures formed by decane with a variety of compounds at 95.8kPa― Fluid Phase Equilibria, 2005, 235, 122-123.                                                                                                                                                              | 1.4              | 0                   |
| 154 | Extension of the PPR78 model (predictive 1978, Peng–Robinson EOS with temperature dependent kij) Tj ETQqC<br>Phase Equilibria, 2005, 237, 193-211.                                                                                                                                                                                    | 0 0 rgBT<br>1.4  | /Overlock 10<br>122 |
| 155 | Application of Inverse Gas Chromatography and Regular Solution Theory for Characterization of<br>Ionic Liquids. Industrial & Engineering Chemistry Research, 2005, 44, 4120-4127.                                                                                                                                                     | 1.8              | 118                 |
| 156 | VLE predictions with the Peng–Robinson equation of state and temperature dependent kij calculated through a group contribution method. Fluid Phase Equilibria, 2004, 224, 285-304.                                                                                                                                                    | 1.4              | 330                 |
| 157 | Solubility of CO2 in some heavy alcohols and correlation of fluid phase equilibrium. Fluid Phase Equilibria, 2003, 213, 153-162.                                                                                                                                                                                                      | 1.4              | 12                  |
| 158 | VOCs isotherms on Day zeolite by static and dynamic methods: Experiments and modelling.<br>Environmental Technology (United Kingdom), 2003, 24, 1201-1210.                                                                                                                                                                            | 1.2              | 6                   |
| 159 | Determining Volatile Organic Compounds' Adsorption Isotherms on Dealuminated Y Zeolite and<br>Correlation with Different Models. Journal of Chemical & Engineering Data, 2002, 47, 1553-1557.                                                                                                                                         | 1.0              | 29                  |
| 160 | Is It Still Necessary to Measure the Minimum Miscibility Pressure?. Industrial & Engineering<br>Chemistry Research, 2002, 41, 303-310.                                                                                                                                                                                                | 1.8              | 79                  |
| 161 | A crude oil data bank containing more than 5000 PVT and gas injection data. Journal of Petroleum Science and Engineering, 2002, 34, 65-107.                                                                                                                                                                                           | 2.1              | 109                 |
| 162 | Enantioseparation through Supercritical Fluid Simulated Moving Bed (SF-SMB) Chromatography.<br>Industrial & Engineering Chemistry Research, 2001, 40, 4603-4609.                                                                                                                                                                      | 1.8              | 79                  |

| #   | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | ADSORPTION AND DESORPTION OFM-XYLENE FROM SUPERCRITICAL CARBON DIOXIDE ON ACTIVATED CARBON. Separation Science and Technology, 2001, 36, 2197-2211.                                                                                                        | 1.3 | 32        |
| 164 | Solubility of α-tetralol in pure carbon dioxide and in a mixed solvent formed by ethanol and carbon<br>dioxide. Fluid Phase Equilibria, 2001, 191, 59-69.                                                                                                  | 1.4 | 7         |
| 165 | Phase equilibria measurements and modeling of EPA and DHA ethyl esters in supercritical carbon dioxide. Journal of Supercritical Fluids, 2001, 20, 145-155.                                                                                                | 1.6 | 56        |
| 166 | A new approach in correlating the oil thermodynamic properties. Journal of Petroleum Science and Engineering, 2001, 30, 43-65.                                                                                                                             | 2.1 | 18        |
| 167 | Adsorption isotherms ofm-xylene on activated carbon: measurements and correlation with different models. Journal of Chemical Thermodynamics, 2000, 32, 401-411.                                                                                            | 1.0 | 34        |
| 168 | Experimental and Modeled Results Describing the Adsorption of Toluene onto Activated Carbon.<br>Journal of Chemical & Engineering Data, 2000, 45, 650-653.                                                                                                 | 1.0 | 60        |
| 169 | Use of a Predictive Cubic Equation of State To Model New Equilibrium Data of Binary Systems<br>Involving Fatty Acid Esters and Supercritical Carbon Dioxide. Industrial & Engineering Chemistry<br>Research, 2000, 39, 2623-2626.                          | 1.8 | 12        |
| 170 | Use of Distribution Functions:  A Useful Tool To Calculate the Properties of Condensate Gases.<br>Industrial & Engineering Chemistry Research, 2000, 39, 5029-5036.                                                                                        | 1.8 | 10        |
| 171 | A Theoretical Model to Simulate Supercritical Fluid Extraction:  Application to the Extraction of<br>Terpenes by Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 2000, 39,<br>4991-5002.                                        | 1.8 | 6         |
| 172 | The Group Contribution Concept:Â A Useful Tool To Correlate Binary Systems and To Predict the Phase<br>Behavior of Multicomponent Systems Involving Supercritical CO2and Fatty Acids. Industrial &<br>Engineering Chemistry Research, 1999, 38, 5011-5018. | 1.8 | 51        |
| 173 | From the Correlation of Binary Systems Involving Supercritical CO2and Fatty Acid Esters to the<br>Prediction of (CO2â^Fish Oils) Phase Behavior. Industrial & Engineering Chemistry Research, 1999,<br>38, 3162-3171.                                      | 1.8 | 55        |
| 174 | A Very Simple Multiple Mixing Cell Calculation To Compute the Minimum Miscibility Pressure<br>Whatever the Displacement Mechanism. Industrial & Engineering Chemistry Research, 1998, 37,<br>4854-4859.                                                    | 1.8 | 100       |
| 175 | Properly Defining the Classical Vaporizing and Condensing Mechanisms When a Gas Is Injected into a<br>Crude Oil. Industrial & Engineering Chemistry Research, 1998, 37, 4860-4869.                                                                         | 1.8 | 37        |
| 176 | Influence of the Crude Oil Characterization on Mmp Calculation. Oil & Gas Science & Technology, 1998, 53, 13-20.                                                                                                                                           | 0.2 | 2         |
| 177 | Thermodynamic modeling for petroleum fluids I. Equation of state and group contribution for the<br>estimation of thermodynamic parameters of heavy hydrocarbons. Fluid Phase Equilibria, 1997, 139,<br>155-170.                                            | 1.4 | 59        |
| 178 | Thermodynamic modeling for petroleum fluids II. Prediction of PVT properties of oils and gases by<br>fitting one or two parameters to the saturation pressures of reservoir fluids. Fluid Phase Equilibria,<br>1997, 139, 171-203.                         | 1.4 | 20        |
| 179 | Thermodynamic modeling for petroleum fluid III. Reservoir fluid saturation pressures. A complete PVT property estimation. Application to swelling test. Fluid Phase Equilibria, 1997, 141, 87-104.                                                         | 1.4 | 22        |
| 180 | Enantiomeric enrichment of non-racemic mixtures of binaphthol with non-chiral packings. Chirality, 1996, 8, 234-243.                                                                                                                                       | 1.3 | 44        |

| #   | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | A new algorithm for enhanced oil recovery calculations. Fluid Phase Equilibria, 1996, 117, 265-272.                                                                                                                                                                                    | 1.4 | 34        |
| 182 | Characterization of Heavy Oils. 3. Prediction of Gas Injection Behavior: Swelling Test, Multicontact<br>Test, Multiple-Contact Minimum Miscibility Pressure, and Multiple-Contact Minimum Miscibility<br>Enrichment. Industrial & Engineering Chemistry Research, 1995, 34, 4016-4032. | 1.8 | 28        |
| 183 | Pressure, Volume, and Temperature Calculations on an Indonesian Crude Oil Using Detailed NMR<br>Analysis or a Predictive Method To Assess the Properties of the Heavy Fractions. Industrial &<br>Engineering Chemistry Research, 1995, 34, 640-655.                                    | 1.8 | 25        |
| 184 | Characterization of Heavy Oils. 2. Definition of a Significant Characterizing Parameter To Ensure the<br>Reliability of Predictive Methods for PVT Calculations. Industrial & Engineering Chemistry<br>Research, 1995, 34, 1873-1881.                                                  | 1.8 | 14        |
| 185 | Characterization of highly boiling hydrocarbons with very low pressure data. Fluid Phase Equilibria, 1993, 87, 89-98.                                                                                                                                                                  | 1.4 | 2         |
| 186 | Characterization of heavy oils. Industrial & amp; Engineering Chemistry Research, 1993, 32, 1196-1203.                                                                                                                                                                                 | 1.8 | 51        |
| 187 | Predicting the Phase Equilibria of Carbon Dioxide Containing Mixtures Involved in CCS Processes<br>Using the PPR78 Model. , 0, , .                                                                                                                                                     |     | 7         |