Jean Nol Jaubert

List of Publications by Citations

Source: https://exaly.com/author-pdf/1356245/jean-noel-jaubert-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

182
papers5,987
citations46
h-index70
g-index188
ext. papers6,706
ext. citations3.4
avg, IF6.15
L-index

#	Paper	IF	Citations
182	VLE predictions with the Peng R obinson equation of state and temperature dependent kij calculated through a group contribution method. <i>Fluid Phase Equilibria</i> , 2004 , 224, 285-304	2.5	289
181	Extraction of Thiophene or Pyridine from n-Heptane Using Ionic Liquids. Gasoline and Diesel Desulfurization. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 2296-2306	3.9	177
180	Predicting the phase equilibria of CO2 + hydrocarbon systems with the PPR78 model (PR EOS and kij calculated through a group contribution method). <i>Journal of Supercritical Fluids</i> , 2008 , 45, 1-26	4.2	173
179	Predicting the phase equilibria of synthetic petroleum fluids with the PPR78 approach. <i>AICHE Journal</i> , 2010 , 56, 3225-3235	3.6	144
178	Partition Coefficients of Organic Compounds in New Imidazolium and Tetralkylammonium Based Ionic Liquids Using Inverse Gas Chromatography. <i>Journal of Chemical & Data, Engineering Data, 2010, 55, 234-242</i>	2.8	136
177	Accurate measurements of thermodynamic properties of solutes in ionic liquids using inverse gas chromatography. <i>Journal of Chromatography A</i> , 2006 , 1102, 256-67	4.5	124
176	Relationship between the binary interaction parameters (kij) of the PengRobinson and those of the SoaveRedlichRwong equations of state: Application to the definition of the PR2SRK model. <i>Fluid Phase Equilibria</i> , 2010 , 295, 26-37	2.5	121
175	Extraction of benzene or thiophene from n-heptane using ionic liquids. NMR and thermodynamic study. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 4600-8	3.4	120
174	Classification of global fluid-phase equilibrium behaviors in binary systems. <i>Chemical Engineering Research and Design</i> , 2013 , 91, 1807-1839	5.5	111
173	Extension of the PPR78 model (predictive 1978, Peng R obinson EOS with temperature dependent kij calculated through a group contribution method) to systems containing aromatic compounds. <i>Fluid Phase Equilibria</i> , 2005 , 237, 193-211	2.5	110
172	Are safe results obtained when the PC-SAFT equation of state is applied to ordinary pure chemicals?. <i>Fluid Phase Equilibria</i> , 2010 , 295, 76-92	2.5	109
171	High carbon dioxide solubilities in imidazolium-based ionic liquids and in poly(ethylene glycol) dimethyl ether. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 12908-13	3.4	107
170	Application of Inverse Gas Chromatography and Regular Solution Theory for Characterization of Ionic Liquids. <i>Industrial & Description of Chemistry Research</i> , 2005 , 44, 4120-4127	3.9	106
169	A consistency test for #functions of cubic equations of state. Fluid Phase Equilibria, 2016 , 427, 513-538	2.5	98
168	A crude oil data bank containing more than 5000 PVT and gas injection data. <i>Journal of Petroleum Science and Engineering</i> , 2002 , 34, 65-107	4.4	94
167	Modeling the solubility of carbon dioxide in imidazolium-based ionic liquids with the PC-SAFT equation of state. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 14375-88	3.4	92
166	Measurement of activity coefficients at infinite dilution in 1-hexadecyl-3-methylimidazolium tetrafluoroborate ionic liquid. <i>Journal of Chemical Thermodynamics</i> , 2007 , 39, 1144-1150	2.9	88

(2010-2016)

165	Development of the translated-consistent tc-PR and tc-RK cubic equations of state for a safe and accurate prediction of volumetric, energetic and saturation properties of pure compounds in the sub- and super-critical domains. <i>Fluid Phase Equilibria</i> , 2016 , 429, 301-312	2.5	85	
164	A Very Simple Multiple Mixing Cell Calculation To Compute the Minimum Miscibility Pressure Whatever the Displacement Mechanism. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 485	54 ³ 485	9 ⁸⁵	
163	Extension of the PPR78 model (Predictive 1978, Peng R obinson EOS with temperature dependent kij calculated through a group contribution method) to systems containing naphtenic compounds. <i>Fluid Phase Equilibria</i> , 2006 , 243, 9-28	2.5	84	
162	Note on the properties altered by application of a Pfielouxflype volume translation to an equation of state. <i>Fluid Phase Equilibria</i> , 2016 , 419, 88-95	2.5	79	
161	Deep Fuels Desulfurization and Denitrogenation Using 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate. <i>Energy & Description (Laborate Science)</i> 25, 1559-1565	4.1	77	
160	Predicting the Phase Equilibria, Critical Phenomena, and Mixing Enthalpies of Binary Aqueous Systems Containing Alkanes, Cycloalkanes, Aromatics, Alkenes, and Gases (N2, CO2, H2S, H2) with the PPR78 Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 16457-16490	3.9	76	
159	Activity Coefficients at Infinite Dilution of Organic Compounds in 1-Butyl-3-methylimidazolium Tetrafluoroborate Using Inverse Gas Chromatography. <i>Journal of Chemical & Data</i> , 2009, 54, 90-101	2.8	76	
158	Activity coefficients at infinite dilution of organic compounds in 1-(meth)acryloyloxyalkyl-3-methylimidazolium bromide using inverse gas chromatography. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 3773-85	3.4	76	
157	Study of Ether-, Alcohol-, or Cyano-Functionalized Ionic Liquids Using Inverse Gas Chromatography. Journal of Chemical & Engineering Data, 2010 , 55, 2434-2443	2.8	75	
156	Is It Still Necessary to Measure the Minimum Miscibility Pressure?. <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure?</i> . <i>Industrial & Description of the Minimum Miscibility Pressure.</i> .	3.9	74	
155	Partition coefficients of organic compounds in new imidazolium based ionic liquids using inverse gas chromatography. <i>Journal of Chromatography A</i> , 2009 , 1216, 4775-86	4.5	73	
154	Enantioseparation through Supercritical Fluid Simulated Moving Bed (SF-SMB) Chromatography. <i>Industrial & Samp; Engineering Chemistry Research</i> , 2001 , 40, 4603-4609	3.9	73	
153	Activity Coefficients at Infinite Dilution of Organic Compounds in Four New Imidazolium-Based Ionic Liquids. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 3106-3114	2.8	72	
152	Addition of the Nitrogen Group to the PPR78 Model (Predictive 1978, Peng Robinson EOS with Temperature-Dependent kij Calculated through a Group Contribution Method). <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 2033-2048	3.9	71	
151	Solubility of CO2 in branched alkanes in order to extend the PPR78 model (predictive 1978, Peng R obinson EOS with temperature-dependent kij calculated through a group contribution method) to such systems. <i>Fluid Phase Equilibria</i> , 2005 , 238, 157-168	2.5	70	
150	Addition of the Hydrogen Sulfide Group to the PPR78 Model (Predictive 1978, Peng R obinson Equation of State with Temperature Dependent kij Calculated through a Group Contribution Method). <i>Industrial & Dependent Research</i> , 2008, 47, 10041-10052	3.9	66	
149	On the imperative need to use a consistent F unction for the prediction of pure-compound supercritical properties with a cubic equation of state. <i>Fluid Phase Equilibria</i> , 2017 , 445, 45-53	2.5	59	
148	Prediction of Partition Coefficients of Organic Compounds in Ionic Liquids: Use of a Linear Solvation Energy Relationship with Parameters Calculated through a Group Contribution Method. <i>Industrial & Description Contribution Method</i> 100 (1918) 100 (1918	3.9	59	

147	Use of the PPR78 Model To Predict New Equilibrium Data of Binary Systems Involving Hydrocarbons and Nitrogen. Comparison with Other GCEOS. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 7483-7489	3.9	59
146	Thermodynamic Properties of Mixtures Containing Ionic Liquids: Activity Coefficients at Infinite Dilution of Organic Compounds in 1-Propyl Boronic Acid-3-Alkylimidazolium Bromide and 1-Propenyl-3-alkylimidazolium Bromide Using Inverse Gas Chromatography. <i>Journal of Chemical</i>	2.8	57
145	Phase equilibria in hydrogen-containing binary systems modeled with the PengRobinson equation of state and temperature-dependent binary interaction parameters calculated through a group-contribution method. <i>Journal of Supercritical Fluids</i> , 2013 , 75, 58-71	4.2	56
144	Experimental and Modeled Results Describing the Adsorption of Toluene onto Activated Carbon. Journal of Chemical & Engineering Data, 2000, 45, 650-653	2.8	56
143	Addition of the sulfhydryl group (BH) to the PPR78 model (predictive 1978, PengRobinson EOS with temperature dependent kij calculated through a group contribution method). <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 1331-1341	2.9	55
142	Incorporation of a volume translation in an equation of state for fluid mixtures: which combining rule? which effect on properties of mixing?. <i>Fluid Phase Equilibria</i> , 2016 , 427, 414-420	2.5	50
141	Phase equilibria measurements and modeling of EPA and DHA ethyl esters in supercritical carbon dioxide. <i>Journal of Supercritical Fluids</i> , 2001 , 20, 145-155	4.2	50
140	The Group Contribution Concept: A Useful Tool To Correlate Binary Systems and To Predict the Phase Behavior of Multicomponent Systems Involving Supercritical CO2 and Fatty Acids. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 5011-5018	3.9	50
139	From the Correlation of Binary Systems Involving Supercritical CO2 and Fatty Acid Esters to the Prediction of (CO2Eish Oils) Phase Behavior. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 3162-3171	3.9	49
138	Thermodynamic modeling for petroleum fluids I. Equation of state and group contribution for the estimation of thermodynamic parameters of heavy hydrocarbons. <i>Fluid Phase Equilibria</i> , 1997 , 139, 155-	1 7δ	48
137	Integrating support vector regression with genetic algorithm for CO2-oil minimum miscibility pressure (MMP) in pure and impure CO2 streams. <i>Fuel</i> , 2016 , 182, 550-557	7.1	47
136	A five-parameter empirical model for correlating the solubility of solid compounds in supercritical carbon dioxide. <i>Fluid Phase Equilibria</i> , 2016 , 411, 74-80	2.5	46
135	Experimental measurements and correlation of vaporliquid equilibrium and critical data for the CO2 + R1234yf and CO2 + R1234ze(E) binary mixtures. <i>International Journal of Refrigeration</i> , 2014 , 47, 141-152	3.8	46
134	Characterization of heavy oils. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 1196-1203	3.9	46
133	Enthalpy and Heat Capacity Changes on Mixing: Fundamental Aspects and Prediction by Means of the PPR78 Cubic Equation of State. <i>Energy & Damp; Fuels</i> , 2013 , 27, 7150-7178	4.1	45
132	Novel Methodology for Analysis and Evaluation of SAFT-Type Equations of State. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 13875-13885	3.9	43
131	Reducing of nitrous oxide emissions using ionic liquids. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 8199-	2 ₃ 046	43
130	Enantiomeric enrichment of non-racemic mixtures of binaphthol with non-chiral packings. <i>Chirality</i> , 1996 , 8, 234-243	2.1	40

(2001-2019)

129	Updated versions of the generalized Soave Function suitable for the Redlich-Kwong and Peng-Robinson equations of state. <i>Fluid Phase Equilibria</i> , 2019 , 485, 264-269	2.5	40
128	Estimation of the environmental impact of a petrochemical process using coupled LCA and exergy analysis. <i>Resources, Conservation and Recycling</i> , 2010 , 54, 291-298	11.9	36
127	E -PPR78: A proper cubic EoS for modelling fluids involved in the design and operation of carbon dioxide capture and storage (CCS) processes. <i>International Journal of Greenhouse Gas Control</i> , 2017 , 56, 126-154	4.2	35
126	Prediction of the phase behavior of alkene-containing binary systems with the PPR78 model. <i>Fluid Phase Equilibria</i> , 2013 , 354, 212-235	2.5	35
125	Solubility of carbon dioxide, nitrous oxide and methane in ionic liquids at pressures close to atmospheric. <i>Fluid Phase Equilibria</i> , 2014 , 372, 26-33	2.5	35
124	Are safe results obtained when SAFT equations are applied to ordinary chemicals? Part 2: Study of solid[]quid equilibria in binary systems. <i>Fluid Phase Equilibria</i> , 2012 , 318, 61-76	2.5	35
123	Extraction of n-Alcohols from n-Heptane Using Ionic Liquids <i>Journal of Chemical & Data</i> , 2011 , 56, 3873-3880	2.8	35
122	Phase equilibria measurements of CO2+methyl cyclopentane and CO2+isopropyl cyclohexane binary mixtures at elevated pressures. <i>Journal of Supercritical Fluids</i> , 2008 , 44, 155-163	4.2	35
121	VLE properties of CO2 Based binary systems containing N2, O2 and Ar: Experimental measurements and modelling results with advanced cubic equations of state. <i>Fluid Phase Equilibria</i> , 2016 , 428, 18-31	2.5	33
120	Predicting Binary-Interaction Parameters of Cubic Equations of State for Petroleum Fluids Containing Pseudo-components. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 2816-2824	3.9	32
119	Properly Defining the Classical Vaporizing and Condensing Mechanisms When a Gas Is Injected into a Crude Oil. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 4860-4869	3.9	31
118	A new algorithm for enhanced oil recovery calculations. Fluid Phase Equilibria, 1996, 117, 265-272	2.5	30
117	Prediction of Partition Coefficients of Organic Compounds in Ionic Liquids Using a Temperature-Dependent Linear Solvation Energy Relationship with Parameters Calculated through a Group Contribution Method. <i>Journal of Chemical & Description Section 2011</i> , 56, 3598-3606	2.8	29
116	Adsorption isotherms ofm-xylene on activated carbon: measurements and correlation with different models. <i>Journal of Chemical Thermodynamics</i> , 2000 , 32, 401-411	2.9	29
115	Analysis of the Combinations of Property Data That Are Suitable for a Safe Estimation of Consistent Twu Function Parameters: Updated Parameter Values for the Translated-Consistent tc-PR and tc-RK Cubic Equations of State. <i>Journal of Chemical & Engineering Data</i> , 2018 , 63, 3980-39	2.8 988	29
114	Determining Volatile Organic Compounds' Adsorption Isotherms on Dealuminated Y Zeolite and Correlation with Different Models. <i>Journal of Chemical & Data</i> , 2002, 47, 1553-1557	2.8	28
113	Addition of the sulfhydryl group (SH) to the PPR78 model: Estimation of missing group-interaction parameters for systems containing mercaptans and carbon dioxide or nitrogen or methane, from newly published data. <i>Fluid Phase Equilibria</i> , 2012 , 334, 197-203	2.5	27
112	ADSORPTION AND DESORPTION OF M-XYLENE FROM SUPERCRITICAL CARBON DIOXIDE ON ACTIVATED CARBON. <i>Separation Science and Technology</i> , 2001 , 36, 2197-2211	2.5	27

111	An improved crude oil atmospheric distillation process for energy integration: Part I: Energy and exergy analyses of the process when a flash is installed in the preheating train. <i>Applied Thermal Engineering</i> , 2012 , 32, 125-131	5.8	26
110	I-PC-SAFT: An Industrialized Version of the Volume-Translated PC-SAFT Equation of State for Pure Components, Resulting from Experience Acquired All through the Years on the Parameterization of SAFT-Type and Cubic Models. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 20815-20827	3.9	25
109	Characterization of Heavy Oils. 3. Prediction of Gas Injection Behavior: Swelling Test, Multicontact Test, Multiple-Contact Minimum Miscibility Pressure, and Multiple-Contact Minimum Miscibility Enrichment. <i>Industrial & Discourse Chemistry Research</i> , 1995 , 34, 4016-4032	3.9	25
108	Discussion around the paradigm of ideal mixtures with emphasis on the definition of the property changes on mixing. <i>Chemical Engineering Science</i> , 2012 , 82, 319-333	4.4	24
107	Taking Another Look at the van der Waals Equation of StateAlmost 150 Years Later. <i>Journal of Chemical & Chemi</i>	2.8	23
106	Development of a Predictive Equation of State for CO2 + Ethyl Ester Mixtures Based on Critical Points Measurements. <i>Journal of Chemical & Engineering Data</i> , 2014 , 59, 3205-3219	2.8	23
105	Phase equilibrium of CCS mixtures: Equation of state modeling and Monte Carlo simulation. <i>Journal of Supercritical Fluids</i> , 2017 , 119, 169-202	4.2	23
104	Bubble and Dew Points of Carbon Dioxide + a Five-Component Synthetic Mixture: Experimental Data and Modeling with the PPR78 Model. <i>Journal of Chemical & Data & Da</i>	1 8 55	23
103	Experimental Measurement and Modeling of Phase Diagrams of Binary Systems Encountered in the Gasoline Desulfurization Process Using Ionic Liquids. <i>Journal of Chemical & Data</i> , 2014, 59, 603-612	2.8	22
102	Fluid-phase-equilibrium prediction of fluorocompound-containing binary systems with the predictive E-PPR78 model. <i>International Journal of Refrigeration</i> , 2017 , 73, 65-90	3.8	22
101	Analysis and prediction of the alpha-function parameters used in cubic equations of state. <i>Chemical Engineering Science</i> , 2015 , 126, 584-603	4.4	22
100	Pressure, Volume, and Temperature Calculations on an Indonesian Crude Oil Using Detailed NMR Analysis or a Predictive Method To Assess the Properties of the Heavy Fractions. <i>Industrial & Engineering Chemistry Research</i> , 1995 , 34, 640-655	3.9	22
99	Validation of a New Apparatus Using the Dynamic Method for Determining the Critical Properties of Binary Gas/Gas Mixtures. <i>Journal of Chemical & Engineering Data</i> , 2013 , 58, 671-676	2.8	21
98	Estimation of Solvation Quantities from Experimental Thermodynamic Data: Development of the Comprehensive CompSol Databank for Pure and Mixed Solutes. <i>Journal of Physical and Chemical Reference Data</i> , 2017 , 46, 033102	4.3	20
97	Extension of the E-PPR78 equation of state to predict fluid phase equilibria of natural gases containing carbon monoxide, helium-4 and argon. <i>Journal of Petroleum Science and Engineering</i> , 2015 , 133, 744-770	4.4	20
96	(Vapor + liquid) equilibria of binary mixtures containing light alcohols and ionic liquids. <i>Journal of Chemical Thermodynamics</i> , 2010 , 42, 177-181	2.9	20
95	Thermodynamic modeling for petroleum fluid III. Reservoir fluid saturation pressures. A complete PVT property estimation. Application to swelling test. <i>Fluid Phase Equilibria</i> , 1997 , 141, 87-104	2.5	19
94	A thermal and thermodynamic code for the computation of Boil-Off Gas Industrial applications of LNG carrier. <i>Cryogenics</i> , 2019 , 99, 105-113	1.8	19

93	A simple and unified algorithm to solve fluid phase equilibria using either the gamma\(\beta\) in the phi\(\beta\) hi approach for binary and ternary mixtures. Computers and Chemical Engineering, 2013, 50, 139-151	₁ 4	18
92	Modeling the Thermodynamics of Fluids Treated by CO2 Capture Processes with Peng R obinson + Residual Helmholtz Energy-Based Mixing Rules. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 2259-2276	3.9	17
91	Addition of the Sulfur Dioxide Group (SO2), the Oxygen Group (O2), and the Nitric Oxide Group (NO) to the E-PPR78 Model. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 9494-9504	3.9	17
90	Thermodynamic modeling for petroleum fluids II. Prediction of PVT properties of oils and gases by fitting one or two parameters to the saturation pressures of reservoir fluids. <i>Fluid Phase Equilibria</i> , 1997 , 139, 171-203	2.5	17
89	Benchmark Database Containing Binary-System-High-Quality-Certified Data for Cross-Comparing Thermodynamic Models and Assessing Their Accuracy. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 14981-15027	3.9	17
88	From ethyl biodiesel to biolubricants: Options for an Indian mustard integrated biorefinery toward a green and circular economy. <i>Industrial Crops and Products</i> , 2019 , 137, 597-614	5.9	16
87	Prediction of Thermodynamic Properties of Alkyne-Containing Mixtures with the E-PPR78 Model. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 8143-8157	3.9	16
86	A new approach in correlating the oil thermodynamic properties. <i>Journal of Petroleum Science and Engineering</i> , 2001 , 30, 43-65	4.4	16
85	Validation of a new apparatus using the dynamic and static methods for determining the critical properties of pure components and mixtures. <i>Journal of Supercritical Fluids</i> , 2012 , 68, 25-30	4.2	15
84	Solubility of CO2 in 1-butyl-3-methylimidazolium diethylene-glycolmonomethylethersulfate and trihexyl(tetradecyl)phosphonium dodecyl-benzenesulfonate. <i>Fluid Phase Equilibria</i> , 2013 , 354, 191-198	2.5	15
83	Reliability of the correlation allowing the kij to switch from an alpha function to another one in hydrogen-containing systems. <i>Fluid Phase Equilibria</i> , 2013 , 338, 23-29	2.5	15
82	Validation of a new apparatus using the dynamic method for determining the critical properties of binary mixtures containing CO2 and a n-alkane. <i>Fluid Phase Equilibria</i> , 2012 , 325, 66-70	2.5	15
81	An improved crude oil atmospheric distillation process for energy integration: Part II: New approach for energy saving by use of residual heat. <i>Applied Thermal Engineering</i> , 2012 , 40, 132-144	5.8	15
80	Role of Impurities on CO2 Injection: Experimental and Numerical Simulations of Thermodynamic Properties of Water-salt-gas Mixtures (CO2 + Co-injected Gases) Under Geological Storage Conditions. <i>Energy Procedia</i> , 2013 , 37, 3638-3645	2.3	14
79	Fluid Phase Equilibria Correlation for Carbon Dioxide +1-Heptanol System with Cubic Equations of State. <i>Industrial & Dioxide </i>	3.9	14
78	High-pressure phase behaviour of the binary system {CO2 + cis-decalin} from (292.75 to 373.75) K. <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 1358-1363	2.9	14
77	Good Reporting Practice for Thermophysical and Thermochemical Property Measurements (IUPAC Technical Report) <i>Pure and Applied Chemistry</i> , 2021 , 93,	2.1	14
76	Selection of a Proper Equation of State for the Modeling of a Supercritical CO2 Brayton Cycle: Consequences on the Process Design. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 6841-6	853 _	13

75	Life Cycle Assessment Applied to Naphtha Catalytic Reforming. <i>Oil and Gas Science and Technology</i> , 2010 , 65, 793-805	1.9	13
74	Characterization of Heavy Oils. 2. Definition of a Significant Characterizing Parameter To Ensure the Reliability of Predictive Methods for PVT Calculations. <i>Industrial & Engineering Chemistry Research</i> , 1995 , 34, 1873-1881	3.9	13
73	Can cubic equations of state be recast in the virial form?. Fluid Phase Equilibria, 2009, 282, 38-50	2.5	12
72	Measurement and prediction of multi-property data of CO2-N2-O2-CH4 mixtures with the B eng-Robinson´+´residual Helmholtz energy-based[model. <i>Fluid Phase Equilibria</i> , 2017 , 437, 166-180	2.5	11
71	General reflection on critical negative azeotropy and upgrade of the Bancroft's rule with application to the acetone + chloroform binary system. <i>Journal of Supercritical Fluids</i> , 2014 , 94, 17-29	4.2	11
70	Possible Existence of a Negative (Positive) Homogeneous Azeotrope When the Binary Mixture Exhibits Positive (Negative) Deviations from Ideal Solution Behavior (That is, When gE is Positive (Negative)). <i>Industrial & Description of the mistry Research</i> , 2006 , 45, 8217-8222	3.9	10
69	Solubility of CO2 in some heavy alcohols and correlation of fluid phase equilibrium. <i>Fluid Phase Equilibria</i> , 2003 , 213, 153-162	2.5	10
68	4-Chloro-2-nitroaniline Solubility in Several Pure Solvents: Determination, Modeling, and Solvent Effect Analysis. <i>Journal of Chemical & Effect Analysis</i> . <i>Journal of Chemical & Data</i> , 2020 , 65, 222-232	2.8	10
67	Search for the optimal expression of the volumetric dependence of the attractive contribution in cubic equations of state. <i>Fluid Phase Equilibria</i> , 2020 , 522, 112750	2.5	10
66	Simulations of the Impact of Co-injected Gases on CO2 Storage, the SIGARRR Project: First Results on Water-gas Interactions Modeling. <i>Energy Procedia</i> , 2014 , 63, 3160-3171	2.3	9
65	Use of a Predictive Cubic Equation of State To Model New Equilibrium Data of Binary Systems Involving Fatty Acid Esters and Supercritical Carbon Dioxide. <i>Industrial & Dioxide amp; Engineering Chemistry Research</i> , 2000 , 39, 2623-2626	3.9	9
64	Optimizing Thermodynamic Models: The Relevance of Molar Fraction Uncertainties. <i>Journal of Chemical & Chemica</i>	2.8	8
63	Application of the Corresponding-State Law to the Parametrization of Statistical Associating Fluid Theory (SAFT)-Type Models: Generation and Use of Generalized Charts (Industrial & Engineering Chemistry Research, 2019, 58, 9127-9139)	3.9	8
62	Pfieloux's mixing rules: 25 years ago and now. <i>Fluid Phase Equilibria</i> , 2011 , 308, 164-167	2.5	8
61	Comments on Application of predictive equations of state in calculating natural gas phase envelopes and critical points <i>Journal of Natural Gas Science and Engineering</i> , 2010 , 2, 150-151	4.6	8
60	Sizing and operating units for the purification and compression of CO2-based streams: The impact of thermodynamic model accuracy. <i>Journal of Supercritical Fluids</i> , 2018 , 140, 336-347	4.2	7
59	Quest for an efficient binary working mixture for an absorption-demixing heat transformer. <i>Energy</i> , 2013 , 55, 594-609	7.9	7
58	Testing the ability of various equations of state to reproduce high-pressure isotherm crossings in the (∄P) plane. <i>Fluid Phase Equilibria</i> , 2012 , 327, 45-57	2.5	7

(2017-2018)

Densities, Apparent Molar Volume, Expansivities, Hepler Constant, and Isobaric Thermal Expansion Coefficients of the Binary Mixtures of Piperazine with Water, Methanol, and Acetone at T = 293.15 to 328.15 K. <i>International Journal of Chemical Engineering</i> , 2018 , 2018, 1-10	2.2	7	
Phase equilibrium data and modeling of ethylic biodiesel, with application to a non-edible vegetable oil. <i>Fuel</i> , 2017 , 203, 633-641	7.1	6	
The design of CO 2 -based working fluids for high-temperature heat source power cycles. <i>Energy Procedia</i> , 2017 , 129, 947-954	2.3	6	
VOCs isotherms on day zeolite by static and dynamic methods: experiments and modelling. <i>Environmental Technology (United Kingdom)</i> , 2003 , 24, 1201-10	2.6	6	
Solubility of £etralol in pure carbon dioxide and in a mixed solvent formed by ethanol and carbon dioxide. <i>Fluid Phase Equilibria</i> , 2001 , 191, 59-69	2.5	6	
Parameterization of SAFT Models: Analysis of Different Parameter Estimation Strategies and Application to the Development of a Comprehensive Database of PC-SAFT Molecular Parameters. <i>Journal of Chemical & Data</i> , 2020, 65, 5920-5932	2.8	6	
Ethanol-Hydrocarbon Blend Vapor Prediction. <i>Journal of Engineering for Gas Turbines and Power</i> , 2010 , 132,	1.7	5	
Use of Distribution Functions: A Useful Tool To Calculate the Properties of Condensate Gases. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 5029-5036	3.9	5	
A Theoretical Model to Simulate Supercritical Fluid Extraction: Application to the Extraction of Terpenes by Supercritical Carbon Dioxide. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 4991-5002	3.9	5	
Use of 300,000 pseudo-experimental data over 1800 pure fluids to assess the performance of four cubic equations of state: SRK, PR, tc-RK, and tc-PR. <i>AICHE Journal</i> ,e17518	3.6	5	
Assessment of the Perturbed Chain-Statistical Associating Fluid Theory Equation of State against a Benchmark Database of High-Quality Binary-System Data. <i>Industrial & Data & Da</i>	3.9	5	
Accurate quantum-corrected cubic equations of state for helium, neon, hydrogen, deuterium and their mixtures. <i>Fluid Phase Equilibria</i> , 2020 , 524, 112790	2.5	4	
Development and characterization of electrospun curcumin-loaded antimicrobial nanofibrous membranes. <i>Textile Reseach Journal</i> , 2020 , 004051752092551	1.7	4	
Vaporlliquid Equilibria of the CH4 + CO2 + H2S Ternary System with Two Different Global Compositions: Experiments and Modeling. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 1802-	1 81 3	4	
SAFT and cubic EoS: Type of deviation from ideality naturally predicted in the absence of BIPs. Application to the modelling of athermal mixtures. <i>Fluid Phase Equilibria</i> , 2021 , 533, 112924	2.5	4	
Teaching the Concept of Gibbs Energy Minimization through Its Application to Phase-Equilibrium Calculation. <i>Journal of Chemical Education</i> , 2016 , 93, 1569-1577	2.4	4	
Assessment of organic Rankine cycle configurations for solar polygeneration orientated to electricity production and desalination. <i>Applied Thermal Engineering</i> , 2021 , 195, 116983	5.8	4	
Simulations of the Impact of Co-injected Gases on CO2 Storage, the SIGARRR Project: Processes and Geochemical Approaches for Gas-water-Salt Interactions Modeling. <i>Energy Procedia</i> , 2017 , 114, 332	.2 -3 33	4 ³	
	Expansion Coefficients of the Binary Mixtures of Piperazine with Water, Methanol, and Acetone at T = 293.15 to 328.15 k. International Journal of Chemical Engineering, 2018, 2018, 2018, 1-10 Phase equilibrium data and modeling of ethylic biodiesel, with application to a non-edible vegetable oil. Fuel, 2017, 129, 947-954 The design of CO 2 -based working fluids for high-temperature heat source power cycles. Energy Procedia, 2017, 129, 947-954 VOCs isotherms on day zeolite by static and dynamic methods: experiments and modelling. Environmental Technology (United Kingdom), 2003, 24, 1201-10 Solubility of Betralol in pure carbon dioxide and in a mixed solvent formed by ethanol and carbon dioxide. Fluid Phase Equilibria, 2001, 191, 59-69 Parameterization of SAFT Models: Analysis of Different Parameter Estimation Strategies and Application to the Development of a Comprehensive Database of PC-SAFT Molecular Parameters. Journal of Chemical & amp: Engineering Data, 2020, 65, 5920-5932 Ethanol-Hydrocarbon Blend Vapor Prediction. Journal of Engineering for Gas Turbines and Power, 2010, 132, Use of Distribution Functions: A Useful Tool To Calculate the Properties of Condensate Gases. Industrial & amp: Engineering Chemistry Research, 2000, 39, 5029-5036 A Theoretical Model to Simulate Supercritical Fluid Extraction: Application to the Extraction of Terpenes by Supercritical Carbon Dioxide. Industrial & amp: Engineering Chemistry Research, 2000, 39, 4991-500. Use of 300,000 pseudo-experimental data over 1800 pure fluids to assess the performance of four cubic equations of state: SRK, PR, tc-RK, and tc-PR. AICHE Journal, e17518 Assessment of the Perturbed Chain-Statistical Associating Fluid Theory Equation of State against a Benchmark Database of High-Quality Binary-System Data. Industrial & amp; Engineering Chemistry Research, 2021, 60, 8935-8946 Accurate quantum-corrected cubic equations of state for helium, neon, hydrogen, deuterium and their mixtures. Fluid Phase Equilibria, 2020, 65, 1802-8046, 1802-8046, 1802	Expansion Coefficients of the Binary Mixtures of Piperazine with Water, Methanol, and Acetone at T = 293.15 to 328.15 K. International Journal of Chemical Engineering, 2018, 2018, 1-10 Phase equilibrium data and modeling of ethylic biodiesel, with application to a non-edible vegetable oil. Fuel, 2017, 203, 633-641 The design of CO 2-based working fluids for high-temperature heat source power cycles. Energy Procedia, 2017, 129, 947-954 VOCs isotherms on day zeolite by static and dynamic methods: experiments and modelling. Environmental Technology (United Kingdom), 2003, 24, 1201-10 Solubility of atertalol in pure carbon dioxide and in a mixed solvent formed by ethanol and carbon dioxide. Fluid Phase Equilibria, 2001, 191, 59-69 Parameterization of SAFT Models: Analysis of Different Parameter Estimation Strategies and Application to the Development of a Comprehensive Database of PC-SAFT Molecular Parameters. 2.8 Journal of Chemical & Bamp: Engineering Data, 2020, 65, 5920-5932 Ethanol-Hydrocarbon Blend Vapor Prediction. Journal of Engineering for Gas Turbines and Power, 2010, 132. Use of Distribution Functions: A Useful Tool To Calculate the Properties of Condensate Gases. Industrial & Bamp: Engineering Chemistry Research, 2000, 39, 5029-5036 A Theoretical Model to Simulate Supercritical Fluid Extraction: Application to the Extraction of Terpenes by Supercritical Carbon Dioxide. Industrial & Bamp: Engineering Chemistry Research, 2000, 39, 4991-5002 Use of 300,000 pseudo-experimental data over 1800 pure fluids to assess the performance of four ubic equations of state: SRK, Pt. tc-RK, and tc-PR. AICHE Journal, e17518 Assessment of the Perturbed Chain-Statistical Associating Fluid Theory Equation of State against a Benchmark Database of High-Quality Binary-System Data. Industrial & Bamp: Engineering Chemistry Research, 2021, 60, 8935-8946 Vaporfliquid Equilibria of the CH4 + CO2 + H25 Ternary System with Two Different Global Compositions: Experiments and Modeling. Journal of Chemical Bamp: Engineering Dat	Expansion Coefficients of the Binary Mixtures of Piperazine with Water, Methanol, and Acetone at 7 = 293.15 to 328.15 K. International Journal of Chemical Engineering, 2018, 2018, 1-10 Phase equilibrium data and modeling of ethylic biodiesel, with application to a non-edible vegetable oil. Fuel, 2017, 203, 633-641 The design of CO 2 based working fluids for high-temperature heat source power cycles. Energy Proceedia, 2017, 129, 947-954 VOCs isotherms on day zeolite by static and dynamic methods: experiments and modelling. Environmental Technology (United Kingdom), 2003, 24, 1201-10 Solubility of Betralol in pure carbon dioxide and in a mixed solvent formed by ethanol and carbon dioxide. Fluid Phase Equilibria, 2001, 191, 59-69 Parameterization of SAFT Models: Analysis of Different Parameter Estimation Strategies and Application to the Development of a Comprehensive Database of PC-SAFT Molecular Parameters. Journal of Chemical Ramp: Engineering Data, 2020, 65, 5920-5932 Ethanol-Hydrocarbon Blend Vapor Prediction. Journal of Engineering for Gas Turbines and Power, 2010, 132. Use of Distribution Functions: A Useful Tool To Calculate the Properties of Condensate Gases. Industrial Ramp: Engineering Chemistry Research, 2000, 39, 5029-5036 A Theoretical Model to Simulate Supercritical Fluid Extraction: Application to the Extraction of Terpenes by Supercritical Carbon Dioxide. Industrial Ramp: Engineering Chemistry Research, 2000, 39, 4991-5002 Use of 300,000 pseudo-experimental data over 1800 pure fluids to assess the performance of four cubic equations of state. SRK, PR, terR, and terPR. AICHE Journal e17518 Assessment of the Perturbed Chain-Statistical Associating Fluid Theory Equation of State against a Benchmark Database of High-Quality Binary-System Data. Industrial Ramp: Engineering Chemistry Research, 2020, 65, 1802-1813 4 Vaportliquid Equilibria of the CH4 + CO2 + H25 Ternary System with Two Different Global Compositions: Experiments and Modeling. Journal of Chemical Ramp: Engineering Data, 2020, 65

39	Exergetic analysis of an LPG production plant using HYSYS software. Energy Procedia, 2019, 157, 1385-	13299	3
38	Can we safely predict solvation Gibbs energies of pure and mixed solutes with a cubic equation of state?. <i>Pure and Applied Chemistry</i> , 2019 , 91, 1295-1307	2.1	3
37	Thermodynamic study of binary systems containing sulphur dioxide and nitric oxide: Measurements and modelling. <i>Fluid Phase Equilibria</i> , 2018 , 461, 84-100	2.5	3
36	Application of PPR78 Thermodynamic Framework as a Fill Method with a Semiempirical Mixing Rule for Mixtures Involved in Gas Processing. <i>Journal of Chemical & Chemic</i>	17 1 .8	3
35	Improving Students (Understanding of the Connections between the Concepts of Real-Gas Mixtures, Gas Ideal-Solutions, and Perfect-Gas Mixtures. <i>Journal of Chemical Education</i> , 2016 , 93, 2040-	-2645	3
34	Predicting the Phase Equilibria of Carbon Dioxide Containing Mixtures Involved in CCS Processes Using the PPR78 Model 2014 ,		3
33	Thermodynamic Models for the Prediction of Petroleum-Fluid Phase Behaviour 2012,		3
32	What Is the Optimal Activity Coefficient Model To Be Combined with the translatedlonsistent PengRobinson Equation of State through Advanced Mixing Rules? Cross-Comparison and Grading of the Wilson, UNIQUAC, and NRTL aE Models against a Benchmark Database Involving 200 Binary	3.9	3
31	Modelling of multi-component droplet evaporation under cryogenic conditions. <i>Oil and Gas Science and Technology</i> , 2020 , 75, 81	1.9	3
30	Revisiting the Entropy-Scaling Concept for Shear-Viscosity Estimation from Cubic and SAFT Equations of State: Application to Pure Fluids in Gas, Liquid and Supercritical States. <i>Industrial & Samp; Engineering Chemistry Research</i> , 2021 , 60, 12719-12739	3.9	3
29	Comments on Bolubility of CO2, N2, and CO2 + N2 Gas Mixtures in Isooctane (Zhang, J. S.; Lee, S.; Lee, J. W. J. Chem. Eng. Data2008, 53, 1321 (1324). <i>Journal of Chemical & Che</i>	2.8	2
28	Characterization of highly boiling hydrocarbons with very low pressure data. <i>Fluid Phase Equilibria</i> , 1993 , 87, 89-98	2.5	2
27	Influence of the Crude Oil Characterization on Mmp Calculation. <i>Oil & Gas Science & Technology</i> , 1998 , 53, 13-20		2
26	Modelling the thermodynamics of air-component mixtures (N2, O2 and Ar): Comparison and performance analysis of available models. <i>Fluid Phase Equilibria</i> , 2018 , 458, 278-287	2.5	2
25	Experimental determination and modelling of high-pressure phase behavior for the binary system CO2 + cyclooctane. <i>Journal of Supercritical Fluids</i> , 2021 , 174, 105249	4.2	2
24	Fluid phase equilibria for the CO2 + 2,3-dimethylbutane binary system from 291.9 K to 373.1 K. Journal of Supercritical Fluids, 2022 , 179, 105387	4.2	2
23	A new technique for the synthesis of lanthanum substituted nickel cobaltite nanocomposites for the photo catalytic degradation of organic dyes in wastewater. <i>Arabian Journal of Chemistry</i> , 2020 , 13, 6341-6347	5.9	1
22	Thermophysical properties of switchable-hydrophilicity solvent systems: N,N-Dipropyl-1-propanamine, water and carbon dioxide. <i>Journal of Chemical Thermodynamics</i> , 2020 , 143, 106049	2.9	1

21	Design of Hybrid Fuels Using a Modeling Study of the Miscibility of Ethanol B iodiesel H ydrocarbon Systems. <i>International Journal of Thermophysics</i> , 2016 , 37, 1	2.1	1
20	Superstructure optimization (MINLP) within ProSimPlus Simulator. <i>Computer Aided Chemical Engineering</i> , 2018 , 767-772	0.6	1
19	Comments on Computational procedure for thermodynamic minimum miscibility pressure of reservoir oil <i>Fuel</i> , 2013 , 107, 882-883	7.1	1
18	Ethanol-Hydrocarbon Blend Vapor Prediction 2009,		1
17	Note on the inconsistent definition assigned in the literature to the heat capacity of the so-called Equilibrium hydrogen Imixture. <i>Fluid Phase Equilibria</i> , 2020 , 504, 112325	2.5	1
16	Thermo-chemical engines: Unexploited high-potential energy converters. <i>Energy Conversion and Management</i> , 2021 , 229, 113685	10.6	1
15	Inert and Reactive Working Fluids for Closed Power Cycles: Present Knowledge, Applications and Open Researches 2018 ,		1
14	Design of Promising Working Fluids for Emergent Combined Cooling, Heating, and Power (CCHP) Systems. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 11807-11824	8.3	1
13	Phase equilibria of mixtures involving fatty acid ethyl esters and fat alcohols between 4 and 27 kPa for bioproduct production. <i>Fuel</i> , 2021 , 306, 121304	7.1	1
12	Comments on P VTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models [Applied Energy, 2012 , 93, 750-752]	10.7	O
11	The impressive impact of including enthalpy and heat capacity of mixing data when parameterising equations of state. Application to the development of the E-PPR78 (Enhanced-Predictive-Peng-Robinson-78) model <i>Fluid Phase Equilibria</i> , 2022 , 113456	2.5	0
10	High-Pressure Phase Equilibria Measurements of the Carbon Dioxide + Cycloheptane Binary System. <i>Journal of Chemical & Engineering Data</i> , 2022 , 67, 176-181	2.8	O
9	Stationary gas turbines: an exergetic approach to part load operation. <i>Oil and Gas Science and Technology</i> , 2020 , 75, 10	1.9	
8	The Impact of Thermodynamic Model Accuracy on Sizing and Operating CCS Purification and Compression Units 2018 , 317-359		
7	Editor preface for the special issue R omanian International Conference on Chemistry and Chemical Engineering <i>Open Chemistry</i> , 2014 , 12, 747-748	1.6	
6	Solubility and freezing point depression (FPD) measurements of Na-1-ethanethiolate, Na-1-propanethiolate, Na-2-propanethiolate, Na-1-butanethiolate, and Na-2-methyl-2-propanethiolate salts in pure water. <i>Chemical Engineering Communications</i> , 2017 ,	2.2	
5	The thermodynamics of alcohols-hydrocarbons mixtures. <i>MATEC Web of Conferences</i> , 2013 , 3, 01018	0.3	
4	Experimental determination of the critical locus of binary systems containing CO2and an ethyl ester. <i>MATEC Web of Conferences</i> , 2013 , 3, 01020	0.3	

3	Modeling phase diagrams of systems containing ionic liquids used in different applications. <i>MATEC Web of Conferences</i> , 2013 , 3, 01014	0.3
2	Comments on Bubble temperature measurements on the binary mixtures formed by decane with a variety of compounds at 95.8kPa[Ifluid Phase Equilibria, 2005, 235, 122-123	2.5
1	Editor Preface for the Special Issue Dedicated to the 2015 JETC. <i>International Journal of Thermophysics</i> , 2016 , 37, 1	2.1