Shunai Che

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1356052/publications.pdf

Version: 2024-02-01

117453 95083 4,943 108 34 68 h-index citations g-index papers 113 113 113 4589 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis and characterization of chiral mesoporous silica. Nature, 2004, 429, 281-284.	13.7	747
2	A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nature Materials, 2003, 2, 801-805.	13.3	540
3	An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Selfâ€Assembled Systems. Advanced Materials, 2018, 30, e1705708.	11.1	276
4	π–π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets. Nature Communications, 2014, 5, 4262.	5.8	223
5	Chiral mesoporous silica: Chiral construction and imprinting via cooperative self-assembly of amphiphiles and silica precursors. Chemical Society Reviews, 2011, 40, 1259-1268.	18.7	154
6	Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity. Nature Communications, 2012, 3, 1215.	5.8	149
7	Synthesis and Characterization of Mesoporous Silica AMS-10 with Bicontinuous CubicPnm Symmetry. Angewandte Chemie - International Edition, 2006, 45, 4295-4298.	7.2	130
8	Optically Active Chiral CuO "Nanoflowers― Journal of the American Chemical Society, 2014, 136, 7193-7196.	6.6	126
9	Formation Mechanism of Anionic Surfactant-Templated Mesoporous Silica. Chemistry of Materials, 2006, 18, 3904-3914.	3.2	123
10	The Effect of the Counteranion on the Formation of Mesoporous Materials under the Acidic Synthesis Process. Journal of the American Chemical Society, 2002, 124, 13962-13963.	6.6	119
11	Synthesis of Large-Porelad Mesoporous Silica and Its Tubelike Carbon Replica. Angewandte Chemie - International Edition, 2003, 42, 3930-3934.	7.2	116
12	Self-Assembly of Cetyltrimethylammonium Bromide and Lamellar Zeolite Precursor for the Preparation of Hierarchical MWW Zeolite. Chemistry of Materials, 2016, 28, 4512-4521.	3.2	88
13	The Formation of CubicPm3l,,nMesostructure by an Epitaxial Phase Transformation from Hexagonalp6mmMesophase. Journal of the American Chemical Society, 2001, 123, 12089-12090.	6.6	86
14	Optically Active Nanostructured ZnO Films. Angewandte Chemie - International Edition, 2015, 54, 15170-15175.	7.2	82
15	Enantiomeric Discrimination by Surfaceâ€Enhanced Raman Scattering–Chiral Anisotropy of Chiral Nanostructured Gold Films. Angewandte Chemie - International Edition, 2020, 59, 15226-15231.	7.2	70
16	Chirality of Metal Nanoparticles in Chiral Mesoporous Silica. Advanced Functional Materials, 2012, 22, 3784-3792.	7.8	69
17	A Hierarchical MFI Zeolite with a Twoâ€Dimensional Square Mesostructure. Angewandte Chemie - International Edition, 2018, 57, 724-728.	7.2	67
18	Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures. Journal of Materials Chemistry, 2007, 17, 1216.	6.7	66

#	Article	IF	CITATIONS
19	Synthesis of Single-Crystalline Mesoporous ZSM-5 with Three-Dimensional Pores via the Self-Assembly of a Designed Triply Branched Cationic Surfactant. Chemistry of Materials, 2014, 26, 7183-7188.	3.2	66
20	An insight into the role of the surfactant CTAB in the formation of microporous molecular sieves. Dalton Transactions, 2014, 43, 3612-3617.	1.6	64
21	Organically Functionalized Mesoporous Silica by Coâ€structureâ€Directing Route. Advanced Functional Materials, 2010, 20, 2750-2768.	7.8	58
22	A Hierarchical MFI Zeolite with a Twoâ€Dimensional Square Mesostructure. Angewandte Chemie, 2018, 130, 732-736.	1.6	57
23	Spontaneous Formation and Characterization of Silica Mesoporous Crystal Spheres with Reverse Multiply Twinned Polyhedral Hollows. Journal of the American Chemical Society, 2011, 133, 6106-6109.	6.6	56
24	Surfactants with Aromatic-Group Tail and Single Quaternary Ammonium Head for Directing Single-Crystalline Mesostructured Zeolite Nanosheets. Chemistry of Materials, 2014, 26, 4612-4619.	3.2	54
25	pH-responsive mitoxantrone (MX) delivery using mesoporous silica nanoparticles (MSN). Journal of Materials Chemistry, 2011, 21, 9483.	6.7	53
26	Monodispersed inorganic/organic hybrid spherical colloids: Versatile synthesis and their gas-triggered reversibly switchable wettability. Journal of Materials Chemistry, 2010, 20, 10001.	6.7	50
27	pH-Responsive Drug Delivery System Based on Coordination Bonding in a Mesostructured Surfactant/Silica Hybrid. Journal of Physical Chemistry C, 2011, 115, 7230-7237.	1.5	50
28	Evolution of Packing Parameters in the Structural Changes of Silica Mesoporous Crystals: Cage-Type, 2D Cylindrical, Bicontinuous Diamond and Gyroid, and Lamellar. Journal of the American Chemical Society, 2011, 133, 11524-11533.	6.6	48
29	Interconversion of Triply Periodic Constant Mean Curvature Surface Structures: From Double Diamond to Single Gyroid. Chemistry of Materials, 2016, 28, 3691-3702.	3.2	46
30	Synthesis and Characterization of Macroporous Photonic Structure that Consists of Azimuthally Shifted Double-Diamond Silica Frameworks. Chemistry of Materials, 2014, 26, 7020-7028.	3.2	44
31	Synthesis of Lamellar Mesostructured ZSM-48 Nanosheets. Chemistry of Materials, 2018, 30, 1839-1843.	3.2	42
32	Carboxylic group functionalized ordered mesoporous silicas. Journal of Materials Chemistry, 2011, 21, 11033.	6.7	40
33	Molecular design of the surfactant and the co-structure-directing agent (CSDA) toward rational synthesis of targeted anionic surfactant templated mesoporous silica. Journal of Materials Chemistry, 2007, 17, 3591.	6.7	38
34	Intergrown Zeolite MWW Polymorphs Prepared by the Rapid Dissolution–Recrystallization Route. Chemistry of Materials, 2015, 27, 7852-7860.	3.2	36
35	Chiral Mesostructured NiO Films with Spin Polarisation. Angewandte Chemie - International Edition, 2021, 60, 9421-9426.	7.2	35
36	A Lesson from the Unusual Morphology of Silica Mesoporous Crystals: Growth and Close Packing of Spherical Micelles with Multiple Twinning. Angewandte Chemie - International Edition, 2006, 45, 6516-6519.	7.2	31

#	Article	IF	CITATIONS
37	Silver Films with Hierarchical Chirality. Angewandte Chemie - International Edition, 2017, 56, 8657-8662.	7.2	30
38	Amino/quaternary ammonium groups bifunctionalized large pore mesoporous silica for pH-responsive large drug delivery. RSC Advances, 2012, 2, 4421.	1.7	29
39	Structural Analyses of Intergrowth and Stacking Fault in Cage-Type Mesoporous Crystals. Chemistry of Materials, 2009, 21, 223-229.	3.2	26
40	Oriented Chiral DNA–Silica Film Guided by a Natural Mica Substrate. Angewandte Chemie - International Edition, 2016, 55, 2037-2041.	7.2	26
41	A Shifted Doubleâ€Diamond Titania Scaffold. Angewandte Chemie - International Edition, 2017, 56, 806-811.	7.2	23
42	Formation of Diverse Ordered Structures in ABC Triblock Terpolymer Templated Macroporous Silicas. Macromolecules, 2018, 51, 4381-4396.	2.2	22
43	Enantiomeric Discrimination by Surfaceâ€Enhanced Raman Scattering–Chiral Anisotropy of Chiral Nanostructured Gold Films. Angewandte Chemie, 2020, 132, 15338-15343.	1.6	22
44	Chiral Nanostructured CuO Films with Multiple Optical Activities. Advanced Optical Materials, 2017, 5, 1601013.	3.6	21
45	Silica Scaffold with Shifted "Plumber's Nightmare―Networks and their Interconversion into Diamond Networks. Angewandte Chemie - International Edition, 2017, 56, 10670-10675.	7.2	21
46	π–π Interactions Between Aromatic Groups in Amphiphilic Molecules: Directing Hierarchical Growth of Porous Zeolites. Angewandte Chemie - International Edition, 2020, 59, 50-60.	7.2	20
47	Optically active chiral Ag nanowires. Science China Materials, 2015, 58, 441-446.	3.5	19
48	Rigid bolaform surfactant templated mesoporous silicon nanofibers as anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 19855-19860.	5.2	18
49	Growth of Optically Active Chiral Inorganic Films through DNA Self-Assembly and Silica Mineralisation. Scientific Reports, 2014, 4, 4866.	1.6	18
50	Mesoporous MFI Zeolite with a 2D Square Structure Directed by Surfactants with an Azobenzene Tail Group. Chemistry - A European Journal, 2018, 24, 8615-8623.	1.7	18
51	Chiral Mesostructured BiOBr Films with Circularly Polarized Colour Response. Angewandte Chemie - International Edition, 2021, 60, 19024-19029.	7.2	18
52	Chiral Mesoporous Materials Based on the Self-Assembly. Journal of Nanoscience and Nanotechnology, 2006, 6, 1557-1564.	0.9	17
53	Singleâ€Crystalline MFI Zeolite with Sheetâ€Like Mesopores Layered along the <i>a</i> Axis. Chemistry - A European Journal, 2019, 25, 738-742.	1.7	17
54	A design concept of amphiphilic molecules for directing hierarchical porous zeolite. New Journal of Chemistry, 2016, 40, 3982-3992.	1.4	16

#	Article	IF	Citations
55	Spontaneous chiral self-assembly of CdSe@CdS nanorods. CheM, 2021, 7, 2695-2707.	5.8	16
56	Resistanceâ€Chiral Anisotropy of Chiral Mesostructured Halfâ€metallic Fe ₃ O ₄ Films. Angewandte Chemie - International Edition, 2021, 60, 20036-20041.	7.2	16
57	Photomagnetic-chiral anisotropy of chiral nanostructured gold films. CheM, 2022, 8, 186-196.	5.8	16
58	Chiral hierarchical structure of bone minerals. Nano Research, 2022, 15, 1295-1302.	5.8	15
59	Structures of Silicaâ€Based Nanoporous Materials Revealed by Microscopy. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 521-536.	0.6	14
60	Enhanced release of the poorly soluble drug itraconazole loaded in ordered mesoporous silica. Science China Chemistry, 2015, 58, 400-410.	4.2	14
61	Oneâ€Pot Synthesis and Formation Mechanism of Hollow ZSMâ€5. Chemistry - A European Journal, 2019, 25, 6196-6202.	1.7	14
62	Title is missing!. Angewandte Chemie, 2003, 115, 2232-2235.	1.6	13
63	Hard-templating of chiral TiO ₂ nanofibres with electron transition-based optical activity. Science and Technology of Advanced Materials, 2015, 16, 054206.	2.8	13
64	Spin Selectivity of Chiral Mesostructured Iron Oxides with Different Magnetisms. Small, 2022, 18, e2104509.	5. 2	13
65	Enantioselective Interaction between Cells and Chiral Hydroxyapatite Films. Chemistry of Materials, 2022, 34, 53-62.	3.2	12
66	Silica cubosomes templated by a star polymer. RSC Advances, 2019, 9, 6118-6124.	1.7	11
67	Library Creation of Ultrasmall Multiâ€metallic Nanoparticles Confined in Mesoporous MFI Zeolites. Angewandte Chemie - International Edition, 2021, 60, 14571-14577.	7.2	11
68	Self-Assembly of Chiral Nematic-Like Films with Chiral Nanorods Directed by Chiral Molecules. Chemistry of Materials, 2021, 33, 6227-6232.	3.2	11
69	Bolaform Molecules Directing Intergrown Zeolites. Journal of Physical Chemistry C, 2018, 122, 9117-9126.	1.5	10
70	Synthesis of ultra-small mordenite zeolite nanoparticles. Science China Materials, 2018, 61, 1185-1190.	3.5	10
71	Spontaneous chiral self-assembly of achiral AlEgens into AlEgen-silica hybrid nanotubes. Chemical Communications, 2019, 55, 14438-14441.	2.2	10
72	Crystal twinning of bicontinuous cubic structures. IUCrJ, 2020, 7, 228-237.	1.0	10

#	Article	IF	Citations
73	Chiral mesostructured SnO2 films with tunable optical activities. Optical Materials, 2019, 94, 21-27.	1.7	9
74	Selfâ€Assembly of Singleâ€Diamondâ€Surface Networks. Angewandte Chemie - International Edition, 2021, 60, 15236-15242.	7.2	9
7 5	Controllable synthesis of silica hollow spheres by vesicle templating of silicone surfactants. Journal of Materials Science, 2013, 48, 1890-1898.	1.7	8
76	Synthesis of hierarchical MFI zeolites with a micro–macroporous core@mesoporous shell structure. Chemical Communications, 2019, 55, 810-813.	2.2	8
77	Fabrication of Chiral Materials via Selfâ€Assembly and Biomineralization of Peptides. Chemical Record, 2015, 15, 665-674.	2.9	7
78	Oriented Chiral DNA–Silica Film Guided by a Natural Mica Substrate. Angewandte Chemie, 2016, 128, 2077-2081.	1.6	7
79	Synthesis of chiral mesostructured titanium dioxide films. Chemical Communications, 2020, 56, 4848-4851.	2.2	7
80	Functional group-template integrated ABC copolymer silicone surfactant directing for highly hydrophobic mesoporous silica. Journal of Materials Chemistry, 2012, 22, 19076.	6.7	6
81	Additive-free synthesis of mesoporous FAU-type zeolite with intergrown structure. Science China Materials, 2018, 61, 1095-1100.	3.5	6
82	Hierarchical MFI Zeolites with a Singleâ€Crystalline Spongeâ€Like Mesostructure. Chemistry - A European Journal, 2018, 24, 19300-19308.	1.7	6
83	Structure Characterization of Mesoporous Materials by Electron Microscopy. The Enzymes, 2018, 43, 11-30.	0.7	6
84	Highly ordered AlEgen directed silica hybrid mesostructures and their light-emitting behaviours. Journal of Materials Chemistry C, 2019, 7, 346-353.	2.7	6
85	Mesoporous Silica Microspheres Composited with SBA-15s for Resonance Frequency Reduction in a Miniature Loudspeaker. Chemical Research in Chinese Universities, 2020, 36, 760-767.	1.3	6
86	Chiral Nanostructured Bimetallic Au–Ag Films for Enantiomeric Discrimination. Advanced Materials Interfaces, 2022, 9, .	1.9	6
87	Molecular design of AEC tri-block anionic surfactant towards rational synthesis of targeted thick-walled mesoporous silica. Journal of Materials Chemistry, 2009, 19, 3404.	6.7	5
88	Fabrication of Photonic Bandgap Materials by Shifting Double Frameworks. Chemistry - A European Journal, 2018, 24, 17389-17396.	1.7	5
89	Molecular design of the amphiphilic AB diblock copolymer toward one-step synthesis of amino-group functionalized large pore mesoporous silica. RSC Advances, 2014, 4, 43047-43051.	1.7	4
90	Hierarchal multi-lamellar silica vesicle clusters synthesized through self-assembly and mineralization. RSC Advances, 2015, 5, 102256-102260.	1.7	4

#	Article	IF	CITATIONS
91	Formation of Lamellar Mesostructured Crystalline Silica by Self-assembly of CTAB. Chemical Research in Chinese Universities, 2019, 35, 359-362.	1.3	4
92	π–π Interactions Between Aromatic Groups in Amphiphilic Molecules: Directing Hierarchical Growth of Porous Zeolites. Angewandte Chemie, 2020, 132, 50-60.	1.6	4
93	Library Creation of Ultrasmall Multiâ€metallic Nanoparticles Confined in Mesoporous MFI Zeolites. Angewandte Chemie, 2021, 133, 14692-14698.	1.6	4
94	Mechanism of diastereoisomer-induced chirality of BiOBr. Chemical Science, 2022, 13, 2450-2455.	3.7	4
95	Chiral Nanoparticles: Chirality of Metal Nanoparticles in Chiral Mesoporous Silica (Adv. Funct.) Tj ETQq1 1 0.7843	l4.rgBT /	Overlock 10
96	Silver Films with Hierarchical Chirality. Angewandte Chemie, 2017, 129, 8783-8788.	1.6	3
97	Chiral Mesostructured BiOBr Films with Circularly Polarized Colour Response. Angewandte Chemie, 2021, 133, 19172-19177.	1.6	3
98	DNAâ€Assisted Creation of a Library of Ultrasmall Multimetal/Metal Oxide Nanoparticles Confined in Silica. Small, 2022, 18, e2107123.	5.2	3
99	Chiral Mesostructured Carbonate with Vibrational Circular Dichroism. Advanced Optical Materials, 2022, 10, .	3.6	3
100	Poly[platinum(iv)-alt-PEI]/Akt1 shRNA complexes for enhanced anticancer therapy. RSC Advances, 2016, 6, 65854-65865.	1.7	2
101	DNA Condensed Phase and DNA-Inorganic Hybrid Mesostructured Materials. ACS Symposium Series, 2017, , 49-79.	0.5	1
102	Chiral Mesostructured NiO Films with Spin Polarisation. Angewandte Chemie, 2021, 133, 9507-9512.	1.6	1
103	Chiral mesostructured hydroxide zinc carbonate for enantioseparation in high performance liquid chromatography. Chemical Communications, 2022, 58, 4040-4043.	2.2	1
104	Mechanical behaviors regulation of triply periodic minimal surface structures with crystal twinning. Additive Manufacturing, 2022, 58, 103036.	1.7	1
105	Frontispiz: Silica Scaffold with Shifted "Plumber's Nightmare―Networks and their Interconversion into Diamond Networks. Angewandte Chemie, 2017, 129, .	1.6	0
106	Frontispiece: Silica Scaffold with Shifted "Plumber's Nightmare―Networks and their Interconversion into Diamond Networks. Angewandte Chemie - International Edition, 2017, 56, 10610-10610.	7.2	0
107	Chiral Mesoporous Silica Materials. , 0, , 121-177.		0
108	Resistanceâ€Chiral Anisotropy of Chiral Mesostructured Halfâ€metallic Fe 3 O 4 Films. Angewandte Chemie, 2021, 133, 20189-20194.	1.6	0