
Fernando Bruno Vieira da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1355970/publications.pdf Version: 2024-02-01

Fernando Bruno Vieira da

#	Article	IF	CITATIONS
1	Assessing human health risks and strategies for phytoremediation in soils contaminated with As, Cd, Pb, and Zn by slag disposal. Ecotoxicology and Environmental Safety, 2017, 144, 522-530.	6.0	40
2	Assessing heavy metal sources in sugarcane Brazilian soils: an approach using multivariate analysis. Environmental Monitoring and Assessment, 2016, 188, 457.	2.7	39
3	Inputs of rare earth elements in Brazilian agricultural soils via P-containing fertilizers and soil correctives. Journal of Environmental Management, 2019, 232, 90-96.	7.8	32
4	Influence of Silicon Fertilization on Nutrient Accumulation, Yield and Fruit Quality of Melon Grown in Northeastern Brazil. Silicon, 2020, 12, 937-943.	3.3	32
5	Environmental risk of trace elements in P-containing fertilizers marketed in Brazil. Journal of Soil Science and Plant Nutrition, 2017, 17, 635-647.	3.4	27
6	Citric acid-assisted accumulation of Ni and other metals by Odontarrhena muralis: Implications for phytoextraction and metal foliar distribution assessed by 1¼-SXRF. Environmental Pollution, 2020, 260, 114025.	7.5	24
7	Risk assessment of heavy metals in soils and edible parts of vegetables grown on sites contaminated by an abandoned steel plant in Havana. Environmental Geochemistry and Health, 2022, 44, 43-56.	3.4	22
8	Bioavailability and sequential extraction of mercury in soils and organisms of a mangrove contaminated by a chlor-alkali plant. Ecotoxicology and Environmental Safety, 2019, 183, 109469.	6.0	19
9	Assessing the spatial distribution and ecologic and human health risks in mangrove soils polluted by Hg in northeastern Brazil. Chemosphere, 2021, 266, 129019.	8.2	15
10	Using plants to remediate or manage metal-polluted soils: an overview on the current state of phytotechnologies. Acta Scientiarum - Agronomy, 0, 43, e58283.	0.6	15
11	Effects of Sewage Sludge Stabilization Processes on Soil Fertility, Mineral Composition, and Grain Yield of Maize in Successive Cropping. Journal of Soil Science and Plant Nutrition, 2021, 21, 1076-1088.	3.4	12
12	Amorphous Silica-Based Fertilizer Increases Stalks and Sugar Yield and Resistance to Stalk Borer in Sugarcane Grown Under Field Conditions. Journal of Soil Science and Plant Nutrition, 2021, 21, 2518-2529.	3.4	9
13	Geospatial modeling and ecological and human health risk assessments of heavy metals in contaminated mangrove soils. Marine Pollution Bulletin, 2022, 177, 113489.	5.0	8
14	Geochemical soil anomalies: Assessment of risk to human health and implications for environmental monitoring. Journal of Geochemical Exploration, 2018, 190, 325-335.	3.2	7
15	Assessing the Content of Micronutrients in Soils and Sugarcane in Different Pedogeological Contexts of Northeastern Brazil. Revista Brasileira De Ciencia Do Solo, 0, 43, .	1.3	7
16	Efficiency and recovery index of silicon of a diatomaceous Earth-based fertilizer in two soil types grown with sugarcane and maize. Journal of Plant Nutrition, 2021, 44, 2347-2358.	1.9	6
17	Phytoattenuation of Cd, Pb, and Zn in a Slag-contaminated Soil Amended with Rice Straw Biochar and Grown with Energy Maize. Environmental Management, 2022, 69, 196-212.	2.7	5
18	Cadmium, silicon and nutrient accumulation by maize plants grown on a contaminated soil amended with a diatomaceous Earth fertilizer. Ciencia Rural, 2021, 51, .	0.5	4

#	Article	IF	CITATIONS
19	Heavy Metal Concentrations and Basal Respiration in Contaminated Substrates used in the Cuban Urban Agriculture. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	2