
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1355779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seasonal patterns of increases in stem girth, vessel development, and hydraulic function in deciduous tree species. Annals of Botany, 2022, , .	1.4	4
2	Starch storage capacity of sapwood is related to dehydration avoidance during drought. American Journal of Botany, 2021, 108, 91-101.	0.8	15
3	Hydraulic function and conduit structure in the xylem of five oak species. IAWA Journal, 2021, 42, 279-298.	0.5	14
4	Diversity in conduit and pit structure among extant gymnosperm taxa. American Journal of Botany, 2021, 108, 559-570.	0.8	5
5	A seed–seedling conflict for Atriplex polycarpa shrubs competing with exotic grasses and their residual dry matter. Ecosphere, 2021, 12, e03455.	1.0	1
6	HYDRAULICS OF PINUS (SUBSECTION PONDEROSAE) POPULATIONS ACROSS AN ELEVATION GRADIENT IN THE SANTA CATALINA MOUNTAINS OF SOUTHERN ARIZONA. Madroño, 2021, 67, .	0.3	4
7	Xylem biomechanics, water storage, and density within roots and shoots of an angiosperm tree species. Journal of Experimental Botany, 2021, 72, 7984-7997.	2.4	8
8	Trade-offs among transport, support, and storage in xylem from shrubs in a semiarid chaparral environment tested with structural equation modeling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23
9	Embolism resistance of different aged stems of a California oak species (Quercus douglasii): optical and microCT methods differ from the benchtop-dehydration standard. Tree Physiology, 2020, 40, 5-18.	1.4	27
10	Forest and woodland replacement patterns following drought-related mortality. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29720-29729.	3.3	99
11	Factors controlling drought resistance in grapevine (<i>Vitis vinifera</i> , chardonnay): application of a new micro <scp>CT</scp> method to assess functional embolism resistance. American Journal of Botany, 2020, 107, 618-627.	0.8	12
12	Node frequency alters stem biomechanics and hydraulics in four deciduous woody species. Journal of Wood Science, 2020, 66, .	0.9	3
13	Highâ€resolution computed tomography reveals dynamics of desiccation and rehydration in fern petioles of a desiccationâ€tolerant fern. New Phytologist, 2019, 224, 97-105.	3.5	19
14	Wood structure and function change with maturity: Age of the vascular cambium is associated with xylem changes in currentâ€year growth. Plant, Cell and Environment, 2019, 42, 1816-1831.	2.8	44
15	Direct comparison of four methods to construct xylem vulnerability curves: Differences among techniques are linked to vessel network characteristics. Plant, Cell and Environment, 2019, 42, 2422-2436.	2.8	44
16	A Great Basin lake-level response to 38–34Âka Dansgaard–Oeschger oscillations. Journal of Paleolimnology, 2019, 61, 263-278.	0.8	1
17	Large volume vessels are vulnerable to water-stress-induced embolism in stems of poplar. IAWA Journal, 2019, 40, 4-S4.	2.7	49
18	Covariation between leaf hydraulics and biomechanics is driven by leaf density in Mediterranean shrubs. Trees - Structure and Function, 2019, 33, 507-519.	0.9	9

#	Article	IF	CITATIONS
19	Identifying which conduits are moving water in woody plants: a new HRCT-based method. Tree Physiology, 2018, 38, 1200-1212.	1.4	40
20	Functional lifespans of xylem vessels: Development, hydraulic function, and postâ€function of vessels in several species of woody plants. American Journal of Botany, 2018, 105, 142-150.	0.8	44
21	Extensive droughtâ€associated plant mortality as an agent of type onversion in chaparral shrublands. New Phytologist, 2018, 219, 498-504.	3.5	61
22	Going with the flow: Structural determinants of vascular tissue transport efficiency and safety. Plant, Cell and Environment, 2018, 41, 2715-2717.	2.8	17
23	Intra-organismal variation in the structure of plant vascular transport tissues in poplar trees. Trees - Structure and Function, 2018, 32, 1335-1346.	0.9	34
24	Post-Fire Ecophysiology of Endemic Chaparral Shrub Seedlings From Santa Catalina Island, Southern California. Madroño, 2018, 65, 106-116.	0.3	4
25	The Biology of Mediterranean-Type Ecosystems. , 2018, , .		46
26	Planning for the future. , 2018, , .		0
27	Characteristics of Mediterranean-Type Ecosystems. , 2018, , .		0
28	Form and Function of Mediterranean Shrublands. , 2018, , .		0
29	Organisms and their Interactions. , 2018, , .		0
30	Diversity and Community Structure. , 2018, , .		0
31	Evolution and Diversity. , 2018, , .		0
32	Ecosystems processes. , 2018, , .		0
33	Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics. Plant, Cell and Environment, 2017, 40, 897-913.	2.8	135
34	Single vessel air injection estimates of xylem resistance to cavitation are affected by vessel network characteristics and sample length. Tree Physiology, 2016, 36, 1247-1259.	1.4	28
35	Towards understanding resprouting at the global scale. New Phytologist, 2016, 209, 945-954.	3.5	197
36	Weak tradeoff between xylem safety and xylemâ€specific hydraulic efficiency across the world's woody plant species. New Phytologist, 2016, 209, 123-136.	3.5	466

#	Article	IF	CITATIONS
37	On research priorities to advance understanding of the safety–efficiency tradeoff in xylem. New Phytologist, 2016, 211, 1156-1158.	3.5	21
38	Structural determinants of increased susceptibility to dehydrationâ€induced cavitation in postâ€fire resprouting chaparral shrubs. Plant, Cell and Environment, 2016, 39, 2473-2485.	2.8	34
39	Chaparral Shrub Hydraulic Traits, Size, and Life History Types Relate to Species Mortality during California's Historic Drought of 2014. PLoS ONE, 2016, 11, e0159145.	1.1	83
40	Grapevine Xylem Development, Architecture, and Function. , 2015, , 133-162.		29
41	Integrative Xylem Analysis of Chaparral Shrubs. , 2015, , 189-207.		21
42	The standard centrifuge method accurately measures vulnerability curves of longâ€vesselled olive stems. New Phytologist, 2015, 205, 116-127.	3.5	89
43	Excising stem samples underwater at native tension does not induce xylem cavitation. Plant, Cell and Environment, 2015, 38, 1060-1068.	2.8	71
44	Geographic And Seasonal Variation In Chaparral Vulnerability To Cavitation. Madroño, 2014, 61, 317-327.	0.3	38
45	Mortality of resprouting chaparral shrubs after a fire and during a record drought: physiological mechanisms and demographic consequences. Global Change Biology, 2014, 20, 893-907.	4.2	115
46	Vulnerability to cavitation of central California Arctostaphylos (Ericaceae): a new analysis. Oecologia, 2013, 171, 329-334.	0.9	10
47	Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method. Plant Biology, 2013, 15, 496-504.	1.8	47
48	Factors Determining Mortality of Adult Chaparral Shrubs in an Extreme Drought Year in California. Aliso, 2013, 31, 49-57.	0.4	39
49	Xylem Transport Safety and Efficiency Differ among Fynbos Shrub Life History Types and between Two Sites Differing in Mean Rainfall. International Journal of Plant Sciences, 2012, 173, 474-483.	0.6	39
50	Allocation tradeoffs among chaparral shrub seedlings with different life history types (Rhamnaceae). American Journal of Botany, 2012, 99, 1464-1476.	0.8	26
51	Global convergence in the vulnerability of forests to drought. Nature, 2012, 491, 752-755.	13.7	1,944
52	No evidence for an open vessel effect in centrifugeâ€based vulnerability curves of a longâ€vesselled liana (<i>Vitis vinifera</i>). New Phytologist, 2012, 194, 982-990.	3.5	91
53	A global analysis of xylem vessel length in woody plants. American Journal of Botany, 2012, 99, 1583-1591.	0.8	109
54	Dieback and mortality of South African fynbos shrubs is likely driven by a novel pathogen and pathogen and pathogenâ€induced hydraulic failure. Austral Ecology, 2012, 37, 227-235.	0.7	10

#	Article	IF	CITATIONS
55	Xylem root and shoot hydraulics is linked to life history type in chaparral seedlings. Functional Ecology, 2010, 24, 70-81.	1.7	54
56	Water stress tolerance of shrubs in Mediterraneanâ€ŧype climate regions: Convergence of fynbos and succulent karoo communities with California shrub communities. American Journal of Botany, 2009, 96, 1445-1453.	0.8	38
57	Xylem function of aridâ€land shrubs from California, USA: an ecological and evolutionary analysis. Plant, Cell and Environment, 2009, 32, 1324-1333.	2.8	75
58	Plant Community Water Use and Invasibility of Semi-Arid Shrublands by Woody Species in Southern California. Madroño, 2009, 56, 213-220.	0.3	9
59	Comparative community physiology: nonconvergence in water relations among three semiâ€arid shrub communities. New Phytologist, 2008, 180, 100-113.	3.5	91
60	Linkage between water stress tolerance and life history type in seedlings of nine chaparral species (Rhamnaceae). Journal of Ecology, 2008, 96, 1252-1265.	1.9	92
61	LIFE HISTORY TYPE AND WATER STRESS TOLERANCE IN NINE CALIFORNIA CHAPARRAL SPECIES (RHAMNACEAE). Ecological Monographs, 2007, 77, 239-253.	2.4	80
62	Vessel Redundancy: Modeling Safety In Numbers. IAWA Journal, 2007, 28, 373-388.	2.7	51
63	CAVITATION RESISTANCE AMONG 26 CHAPARRAL SPECIES OF SOUTHERN CALIFORNIA. Ecological Monographs, 2007, 77, 99-115.	2.4	219
64	Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South Africa. Journal of Ecology, 2007, 95, 171-183.	1.9	176
65	Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities. Plant, Cell and Environment, 2007, 30, 1599-1609.	2.8	118
66	Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist, 2007, 174, 787-798.	3.5	297
67	Do Xylem Fibers Affect Vessel Cavitation Resistance?. Plant Physiology, 2005, 139, 546-556.	2.3	351
68	Mechanisms for tolerating freeze–thaw stress of two evergreen chaparral species: <i>Rhus ovata</i> and <i>Malosma laurina</i> (Anacardiaceae). American Journal of Botany, 2005, 92, 1102-1113.	0.8	42
69	Adaptive variation among oaks in wood anatomical properties is shaped by climate of origin and shows limited plasticity across environments. Functional Ecology, O	1.7	9