Christina L Burch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1355503/publications.pdf

Version: 2024-02-01

		279701	360920
35	3,146	23	35
papers	citations	h-index	g-index
			27.62
39	39	39	3560
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Architecture and secondary structure of an entire HIV-1 RNA genome. Nature, 2009, 460, 711-716.	13.7	719
2	Evolution by Small Steps and Rugged Landscapes in the RNA Virus ï-6. Genetics, 1999, 151, 921-927.	1.2	292
3	Evolvability of an RNA virus is determined by its mutational neighbourhood. Nature, 2000, 406, 625-628.	13.7	259
4	Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature, 2006, 440, 87-90.	13.7	211
5	Pleiotropic Costs of Niche Expansion in the RNA Bacteriophage Φ6. Genetics, 2006, 172, 751-757.	1.2	179
6	Kin Selection and Parasite Evolution: Higher and Lower Virulence with Hard and Soft Selection. Quarterly Review of Biology, 2000, 75, 261-275.	0.0	131
7	Epistasis and Its Relationship to Canalization in the RNA Virus φ6. Genetics, 2004, 167, 559-567.	1.2	119
8	Hotter Is Better and Broader: Thermal Sensitivity of Fitness in a Population of Bacteriophages. American Naturalist, 2009, 173, 419-430.	1.0	112
9	The emergence of performance tradeâ€offs during local adaptation: insights from experimental evolution. Molecular Ecology, 2017, 26, 1720-1733.	2.0	99
10	Beneficial Fitness Effects Are Not Exponential for Two Viruses. Journal of Molecular Evolution, 2008, 67, 368-376.	0.8	97
11	Cross-sectional characterization of HIV-1 env compartmentalization in cerebrospinal fluid over the full disease course. Aids, 2009, 23, 907-915.	1.0	94
12	EVOLUTION OF HOST SPECIFICITY DRIVES REPRODUCTIVE ISOLATION AMONG RNA VIRUSES. Evolution; International Journal of Organic Evolution, 2007, 61, 2614-2622.	1.1	85
13	Comparison of SIV and HIV-1 Genomic RNA Structures Reveals Impact of Sequence Evolution on Conserved and Non-Conserved Structural Motifs. PLoS Pathogens, 2013, 9, e1003294.	2.1	83
14	The Genetic Basis of Thermal Reaction Norm Evolution in Lab and Natural Phage Populations. PLoS Biology, 2006, 4, e201.	2.6	81
15	High Frequency of Mutations That Expand the Host Range of an RNA Virus. Genetics, 2007, 176, 1013-1022.	1.2	77
16	Coronavirus Host Range Expansion and Middle East Respiratory Syndrome Coronavirus Emergence: Biochemical Mechanisms and Evolutionary Perspectives. Annual Review of Virology, 2015, 2, 95-117.	3.0	75
17	Competition and the origins of novelty: experimental evolution of niche-width expansion in a virus. Biology Letters, 2013, 9, 20120616.	1.0	62
18	Hybrid Frequencies Confirm Limit to Coinfection in the RNA Bacteriophage φ6. Journal of Virology, 1999, 73, 2420-2424.	1.5	49

#	Article	IF	Citations
19	Permissivity of Dipeptidyl Peptidase 4 Orthologs to Middle East Respiratory Syndrome Coronavirus Is Governed by Glycosylation and Other Complex Determinants. Journal of Virology, 2017, 91, .	1.5	38
20	Optimal Foraging Predicts the Ecology but Not the Evolution of Host Specialization in Bacteriophages. PLoS ONE, 2008, 3, e1946.	1.1	35
21	Patterns of epistasis in RNA viruses: a review of the evidence from vaccine design. Journal of Evolutionary Biology, 2003, 16, 1223-1235.	0.8	32
22	Experimental Estimate of the Abundance and Effects of Nearly Neutral Mutations in the RNA Virus ϕ6. Genetics, 2007, 176, 467-476.	1.2	28
23	The molecular epidemiology of HIV-1 envelope diversity during HIV-1 subtype C vertical transmission in Malawian mother–infant pairs. Aids, 2008, 22, 863-871.	1.0	26
24	Genetic Architecture and the Evolution of Sex. Journal of Heredity, 2010, 101, S142-S157.	1.0	24
25	Evolutionary rescue and the coexistence of generalist and specialist competitors: an experimental test. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151932.	1.2	24
26	An Evolving Genetic Architecture Interacts with Hill–Robertson Interference to Determine the Benefit of Sex. Genetics, 2016, 203, 923-936.	1.2	20
27	Compensatory Evolution in RNA Secondary Structures Increases Substitution Rate Variation among Sites. Molecular Biology and Evolution, 2008, 25, 1778-1787.	3.5	18
28	Major Coexisting Human Immunodeficiency Virus Type $1 < i > env < i > Gene$ Subpopulations in the Peripheral Blood Are Produced by Cells with Similar Turnover Rates and Show Little Evidence of Genetic Compartmentalization. Journal of Virology, 2009, 83, 4068-4080.	1.5	15
29	Direct deconvolution density estimation of a mixture distribution motivated by mutation effects distribution. Journal of Nonparametric Statistics, 2010, 22, 1-22.	0.4	14
30	Deconvolution estimation of mixture distributions with boundaries. Electronic Journal of Statistics, 2013, 7, 323-341.	0.4	11
31	ORIGINAL ARTICLE: Coinfection rates in φ6 bacteriophage are enhanced by virusâ€induced changes in host cells. Evolutionary Applications, 2009, 2, 24-31.	1.5	10
32	Recombination drives the evolution of mutational robustness. Current Opinion in Systems Biology, 2019, 13, 142-149.	1.3	9
33	Dominance Effects of Deleterious and Beneficial Mutations in a Single Gene of the RNA Virus ϕ6. PLoS ONE, 2014, 9, e97717.	1.1	4
34	Population structure promotes the evolution of costly sex in artificial gene networks. Evolution; International Journal of Organic Evolution, 2019, 73, 1089-1100.	1.1	4
35	Evolutionary pathways to NS5A inhibitor resistance in genotype 1 hepatitis C virus. Antiviral Research, 2018, 158, 45-51.	1.9	3