Kalyan Raidongia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1355369/publications.pdf Version: 2024-02-01

KALVAN PAIDONCIA

#	Article	IF	CITATIONS
1	On the origin of the stability of graphene oxide membranes in water. Nature Chemistry, 2015, 7, 166-170.	6.6	788
2	Nanofluidic Ion Transport through Reconstructed Layered Materials. Journal of the American Chemical Society, 2012, 134, 16528-16531.	6.6	420
3	Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nature Communications, 2015, 6, 7602.	5.8	261
4	Graphene Oxide Assisted Hydrothermal Carbonization of Carbon Hydrates. ACS Nano, 2014, 8, 449-457.	7.3	128
5	Molybdenum Sulfide Supported on Crumpled Graphene Balls for Electrocatalytic Hydrogen Production. Advanced Energy Materials, 2014, 4, 1400398.	10.2	101
6	Robust and Self-Healable Bulk-Superhydrophobic Polymeric Coating. Chemistry of Materials, 2017, 29, 8720-8728.	3.2	65
7	Water and salt dynamics in multilayer graphene oxide (GO) membrane: Role of lateral sheet dimensions. Journal of Membrane Science, 2018, 563, 785-793.	4.1	50
8	Strategic Shuffling of Clay Layers to Imbue Them with Responsiveness. Advanced Materials, 2017, 29, 1701164.	11.1	47
9	Synthesis of fish scale and lotus leaf mimicking, stretchable and durable multilayers. Journal of Materials Chemistry A, 2018, 6, 15993-16002.	5.2	37
10	Solvent-driven responsive bilayer membranes of clay and graphene oxide. Journal of Materials Chemistry A, 2017, 5, 3523-3533.	5.2	36
11	Kirigami nanofluidics. Materials Chemistry Frontiers, 2018, 2, 475-482.	3.2	35
12	Strategic Formulation of Graphene Oxide Sheets for Flexible Monoliths and Robust Polymeric Coatings Embedded with Durable Bioinspired Wettability. ACS Applied Materials & Interfaces, 2017, 9, 42354-42365.	4.0	26
13	A two-dimensional ion-pump of a vanadium pentoxide nanofluidic membrane. Journal of Materials Chemistry A, 2019, 7, 10552-10560.	5.2	24
14	Microporous Organic Polymerâ€Derived Nitrogenâ€Doped Porous Carbon Spheres for Efficient Capacitive Energy Storage. ChemElectroChem, 2019, 6, 3327-3336.	1.7	18
15	Graphene Oxide: Some New Insights into an Old Material. , 2014, , 341-374.		17
16	Intercalating cation specific self-repairing of vermiculite nanofluidic membrane. Journal of Materials Chemistry A, 2018, 6, 21990-21998.	5.2	16
17	Nanofluidic transport through humic acid modified graphene oxide nanochannels. Materials Chemistry Frontiers, 2018, 2, 1647-1654.	3.2	16
18	Energy from the Nanofluidic Transport of Water through Nanochannels between Packed Silica Spheres. ACS Applied Nano Materials, 2019, 2, 5850-5856.	2.4	16

Kalyan Raidongia

#	Article	IF	CITATIONS
19	Applications of Lamellar Membranes Reconstructed from Clay Mineral-Based Nanosheets: A Review. ACS Applied Nano Materials, 2022, 5, 15972-15999.	2.4	16
20	Enhanced catalytic activity and near room temperature gas sensing properties of SnO ₂ nanoclusters@mesoporous Sn(<scp>iv</scp>) organophosphonate composite. Dalton Transactions, 2017, 46, 8664-8672.	1.6	13
21	Super-wetting properties of functionalized fluorinated graphene and its application in oil–water and emulsion separation. Materials Chemistry Frontiers, 2021, 5, 6244-6255.	3.2	13
22	Chemical reactions under the nanofluidic confinement of reconstructed lamellar membranes. Journal of Materials Chemistry A, 2018, 6, 22931-22939.	5.2	12
23	Extraction of Evaporation-Driven Electrokinetic Streaming Potential from V ₂ O ₅ Nanochannels through Secondary Sources. ACS Applied Energy Materials, 2021, 4, 8410-8420.	2.5	12
24	Preparation of responsive bilayer membrane through morphological tuning of nano-scale building blocks. Journal of Materials Chemistry A, 2019, 7, 21157-21167.	5.2	10
25	Uphill Anion Pumping through Triangular Nanofluidic Device of Reconstructed Layered Double Hydroxide. Journal of Physical Chemistry C, 2021, 125, 17939-17949.	1.5	10
26	Electrical Actuation of Hydrophobic Bilayer Membranes of Reduced Graphene Oxide and Agar for Inducing Chemical Reactions in Microdroplets. ACS Applied Nano Materials, 2020, 3, 6629-6635.	2.4	9
27	Control of Selective Ion Transfer across Liquid–Liquid Interfaces: A Rectifying Heterojunction Based on Immiscible Electrolytes. ACS Central Science, 2016, 2, 857-866.	5.3	8
28	Fabrication of Pressure-Responsive Energy Device from Nanofluidic Vanadium Pentoxide and Polymeric Hydrogel. ACS Applied Electronic Materials, 2021, 3, 277-284.	2.0	8
29	Performance evaluation of reduced graphene oxide membrane doped with polystyrene sulfonic acid for forward osmosis process. Sustainable Energy Technologies and Assessments, 2021, 44, 101093.	1.7	6
30	Fabrication of polyaniline–graphene oxide hybrid nanocomposites by green interfacial polymerization for all-solid-state supercapacitors and enzymatic glucose sensors. New Journal of Chemistry, 2021, 45, 17909-17917.	1.4	6
31	Reconstruction of Soil Components into Multifunctional Freestanding Membranes. ACS Omega, 2019, 4, 1292-1299.	1.6	5
32	Application of reduced graphene oxide-based actuators for real-time chemical sensing of liquid and vapour phase contaminants. New Journal of Chemistry, 2021, 45, 16883-16891.	1.4	5
33	Clay-Based Nanofluidic Membrane Derived from Vermiculite Nanoflakes for Pressure-Responsive Power Generation. ACS Applied Nano Materials, 2021, 4, 4872-4880.	2.4	5
34	Remarkable Rate of Water Evaporation through Naked Veins of Natural Tree Leaves. ACS Omega, 2021, 6, 20379-20387.	1.6	5
35	Disposable Fluidic Devices of Bionanochannels for Enzymatic Monitoring and Energy Harvesting. ACS Applied Bio Materials, 2019, 2, 2549-2556.	2.3	4
36	Electrical Power Generation from the Contrasting Interfacial Activities of Boron- and Nitrogen-Doped Reduced Graphene Oxide Membranes. ACS Applied Nano Materials, 2019, 2, 7997-8004.	2.4	4

#	Article	IF	CITATIONS
37	The range of antiferromagnetic coupling governs the conductivity: semiconducting behavior and ammonia gas sensing property of diamagnetic hexaradical-containing tetranuclear Colll4 cluster and its nonradical congener. Chemical Communications, 2020, 56, 15220-15223.	2.2	1