
Carol V Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1355260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature, 1997, 385, 787-793.	13.7	1,061
2	lon mobility–mass spectrometry analysis of large protein complexes. Nature Protocols, 2008, 3, 1139-1152.	5.5	973
3	Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nature Chemistry, 2009, 1, 326-331.	6.6	835
4	Collision Cross Sections of Proteins and Their Complexes: A Calibration Framework and Database for Gas-Phase Structural Biology. Analytical Chemistry, 2010, 82, 9557-9565.	3.2	694
5	Membrane proteins bind lipids selectively to modulate their structure and function. Nature, 2014, 510, 172-175.	13.7	665
6	Bayesian Deconvolution of Mass and Ion Mobility Spectra: From Binary Interactions to Polydisperse Ensembles. Analytical Chemistry, 2015, 87, 4370-4376.	3.2	663
7	Targeting C-reactive protein for the treatment of cardiovascular disease. Nature, 2006, 440, 1217-1221.	13.7	621
8	Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nature Protocols, 2007, 2, 715-726.	5.5	597
9	Detection of transient protein folding populations by mass spectrometry. Science, 1993, 262, 896-900.	6.0	590
10	Evidence for Macromolecular Protein Rings in the Absence of Bulk Water. Science, 2005, 310, 1658-1661.	6.0	551
11	The molecular sociology of the cell. Nature, 2007, 450, 973-982.	13.7	497
12	A Tandem Mass Spectrometer for Improved Transmission and Analysis of Large Macromolecular Assemblies. Analytical Chemistry, 2002, 74, 1402-1407.	3.2	481
13	Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Science, 2000, 9, 1960-1967.	3.1	453
14	The structure of the dynactin complex and its interaction with dynein. Science, 2015, 347, 1441-1446.	6.0	389
15	Assembly reflects evolution of protein complexes. Nature, 2008, 453, 1262-1265.	13.7	383
16	Protein Complexes in the Gas Phase:  Technology for Structural Genomics and Proteomics. Chemical Reviews, 2007, 107, 3544-3567.	23.0	376
17	Mass spectrometry of intact membrane protein complexes. Nature Protocols, 2013, 8, 639-651.	5.5	354
18	The role of interfacial lipids in stabilizing membrane protein oligomers. Nature, 2017, 541, 421-424.	13.7	344

#	Article	IF	CITATIONS
19	Molecular recycling within amyloid fibrils. Nature, 2005, 436, 554-558.	13.7	342
20	Structural Characterization of Drug-like Compounds by Ion Mobility Mass Spectrometry: Comparison of Theoretical and Experimentally Derived Nitrogen Collision Cross Sections. Analytical Chemistry, 2012, 84, 1026-1033.	3.2	340
21	The Role of Mass Spectrometry in Structure Elucidation of Dynamic Protein Complexes. Annual Review of Biochemistry, 2007, 76, 167-193.	5.0	337
22	Micelles Protect Membrane Complexes from Solution to Vacuum. Science, 2008, 321, 243-246.	6.0	333
23	An Oligomeric Signaling Platform Formed by the Toll-like Receptor Signal Transducers MyD88 and IRAK-4. Journal of Biological Chemistry, 2009, 284, 25404-25411.	1.6	323
24	Class I HDACs Share a Common Mechanism of Regulation by Inositol Phosphates. Molecular Cell, 2013, 51, 57-67.	4.5	314
25	Probing the Nature of Noncovalent Interactions by Mass Spectrometry. A Study of Proteinâ^'CoA Ligand Binding and Assembly. Journal of the American Chemical Society, 1996, 118, 8646-8653.	6.6	304
26	Structures of SAS-6 Suggest Its Organization in Centrioles. Science, 2011, 331, 1196-1199.	6.0	284
27	Ion Mobility Mass Spectrometry of Peptide Ions: Effects of Drift Gas and Calibration Strategies. Analytical Chemistry, 2012, 84, 7124-7130.	3.2	281
28	Structure of a designed protein cage that self-assembles into a highly porous cube. Nature Chemistry, 2014, 6, 1065-1071.	6.6	267
29	Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Science, 2010, 19, 1031-1043.	3.1	264
30	Programmable polyproteams built using twin peptide superglues. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1202-1207.	3.3	262
31	Characterization of the Oligomeric States of Insulin in Self-Assembly and Amyloid Fibril Formation by Mass Spectrometry. Biophysical Journal, 2000, 79, 1053-1065.	0.2	258
32	PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science, 2015, 347, 185-188.	6.0	252
33	Mass Spectrometry of Intact V-Type ATPases Reveals Bound Lipids and the Effects of Nucleotide Binding. Science, 2011, 334, 380-385.	6.0	251
34	The Fas–FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nature Structural and Molecular Biology, 2010, 17, 1324-1329.	3.6	236
35	PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature, 2018, 559, 423-427.	13.7	236
36	Polydispersity of a mammalian chaperone: Mass spectrometry reveals the population of oligomers in ÂB-crystallin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10611-10616.	3.3	235

#	Article	IF	CITATIONS
37	Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor elF3. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18139-18144.	3.3	233
38	Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2007-2012.	3.3	231
39	Collision Cross Sections for Structural Proteomics. Structure, 2015, 23, 791-799.	1.6	231
40	Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nature Chemical Biology, 2017, 13, 262-264.	3.9	231
41	A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme. Nature, 2003, 424, 783-788.	13.7	227
42	Charge-State Dependent Compaction and Dissociation of Protein Complexes: Insights from Ion Mobility and Molecular Dynamics. Journal of the American Chemical Society, 2012, 134, 3429-3438.	6.6	223
43	Conformation of GroEL-bound \hat{i} ±-lactalbumin probed by mass spectrometry. Nature, 1994, 372, 646-651.	13.7	221
44	Aspects of native proteins are retained in vacuum. Current Opinion in Chemical Biology, 2006, 10, 402-408.	2.8	217
45	Protein Complexes Are under Evolutionary Selection to Assemble via Ordered Pathways. Cell, 2013, 153, 461-470.	13.5	215
46	Ion Mobility–Mass Spectrometry Reveals Longâ€Lived, Unfolded Intermediates in the Dissociation of Protein Complexes. Angewandte Chemie - International Edition, 2007, 46, 8001-8004.	7.2	213
47	Detection and selective dissociation of intact ribosomes in a mass spectrometer. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5185-5190.	3.3	209
48	Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme. Nature Structural Biology, 2002, 9, 308-315.	9.7	208
49	Tandem Mass Spectrometry Reveals the Quaternary Organization of Macromolecular Assemblies. Chemistry and Biology, 2006, 13, 597-605.	6.2	206
50	High-resolution mass spectrometry of small molecules bound to membrane proteins. Nature Methods, 2016, 13, 333-336.	9.0	205
51	Electrospray Time-of-Flight Mass Spectrometry of the Intact MS2 Virus Capsid. Journal of the American Chemical Society, 2000, 122, 3550-3551.	6.6	199
52	Mass spectrometry of macromolecular assemblies: preservation and dissociation. Current Opinion in Structural Biology, 2006, 16, 245-251.	2.6	199
53	Interaction of the Molecular Chaperone αB-Crystallin with α-Synuclein: Effects on Amyloid Fibril Formation and Chaperone Activity. Journal of Molecular Biology, 2004, 340, 1167-1183.	2.0	198
54	Principles of assembly reveal a periodic table of protein complexes. Science, 2015, 350, aaa2245.	6.0	198

#	Article	IF	CITATIONS
55	Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature, 2017, 541, 407-411.	13.7	188
56	Protein Complexes of the Escherichia coli Cell Envelope*. Journal of Biological Chemistry, 2005, 280, 34409-34419.	1.6	183
57	Structure of the CRISPR Interference Complex CSM Reveals Key Similarities with Cascade. Molecular Cell, 2013, 52, 124-134.	4.5	181
58	The structured core domain of αB-crystallin can prevent amyloid fibrillation and associated toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1562-70.	3.3	181
59	Subunit Exchange of Multimeric Protein Complexes. Journal of Biological Chemistry, 2002, 277, 38921-38929.	1.6	180
60	The Co-chaperone p23 Arrests the Hsp90 ATPase Cycle to Trap Client Proteins. Journal of Molecular Biology, 2006, 356, 746-758.	2.0	179
61	Structural Organization of the 19S Proteasome Lid: Insights from MS of Intact Complexes. PLoS Biology, 2006, 4, e267.	2.6	176
62	Investigation of protein folding by mass spectrometry. FASEB Journal, 1996, 10, 93-101.	0.2	175
63	Recognition of a signal peptide by the signal recognition particle. Nature, 2010, 465, 507-510.	13.7	172
64	Mass Spectrometry of Protein Complexes: From Origins to Applications. Annual Review of Physical Chemistry, 2015, 66, 453-474.	4.8	169
65	Subunit architecture of multimeric complexes isolated directly from cells. EMBO Reports, 2006, 7, 605-610.	2.0	168
66	Protein subunit interactions and structural integrity of amyloidogenic transthyretins: evidence from electrospray mass spectrometry. Journal of Molecular Biology, 1998, 281, 553-564.	2.0	167
67	Mass Measurements of Increased Accuracy Resolve Heterogeneous Populations of Intact Ribosomes. Journal of the American Chemical Society, 2006, 128, 11433-11442.	6.6	166
68	Mechanistic Studies of the Folding of Human Lysozyme and the Origin of Amyloidogenic Behavior in Its Disease-Related Variants. Biochemistry, 1999, 38, 6419-6427.	1.2	165
69	Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nature Methods, 2009, 6, 585-587.	9.0	164
70	Structure of the TatC core of the twin-arginine protein transport system. Nature, 2012, 492, 210-214.	13.7	164
71	Coupling Microdroplet Microreactors with Mass Spectrometry: Reading the Contents of Single Droplets Online. Angewandte Chemie - International Edition, 2009, 48, 3665-3668.	7.2	162
72	Detection of the Intact GroEL Chaperonin Assembly by Mass Spectrometry. Journal of the American Chemical Society, 1999, 121, 4718-4719.	6.6	161

#	Article	IF	CITATIONS
73	Thermal Dissociation of Multimeric Protein Complexes by Using Nanoelectrospray Mass Spectrometry. Analytical Chemistry, 2003, 75, 2208-2214.	3.2	161
74	The role of lipids in mechanosensation. Nature Structural and Molecular Biology, 2015, 22, 991-998.	3.6	160
75	The structural basis for CD36 binding by the malaria parasite. Nature Communications, 2016, 7, 12837.	5.8	160
76	Mimicking phosphorylation of αB-crystallin affects its chaperone activity. Biochemical Journal, 2007, 401, 129-141.	1.7	159
77	Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9704-9709.	3.3	156
78	Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. Science, 2018, 362, 829-834.	6.0	155
79	Studies of the RNA Degradosome-organizing Domain of the Escherichia coli Ribonuclease RNase E. Journal of Molecular Biology, 2004, 340, 965-979.	2.0	153
80	Structural Insights into the Activity of Enhancer-Binding Proteins. Science, 2005, 307, 1972-1975.	6.0	153
81	Structure of the core of the type III secretion system export apparatus. Nature Structural and Molecular Biology, 2018, 25, 583-590.	3.6	153
82	Structure of V-ATPase from the mammalian brain. Science, 2020, 367, 1240-1246.	6.0	153
83	Detergent-free mass spectrometry of membrane protein complexes. Nature Methods, 2013, 10, 1206-1208.	9.0	152
84	Structural basis for the subunit assembly of the anaphase-promoting complex. Nature, 2011, 470, 227-232.	13.7	150
85	Do Charge State Signatures Guarantee Protein Conformations?. Journal of the American Society for Mass Spectrometry, 2012, 23, 1161-1168.	1.2	149
86	A mass spectrometry–based hybrid method for structural modeling of protein complexes. Nature Methods, 2014, 11, 403-406.	9.0	149
87	Alternate Dissociation Pathways Identified in Charge-Reduced Protein Complex Ions. Analytical Chemistry, 2010, 82, 5363-5372.	3.2	145
88	Phosphorylation of αB-Crystallin Alters Chaperone Function through Loss of Dimeric Substructure. Journal of Biological Chemistry, 2004, 279, 28675-28680.	1.6	144
89	Twenty Years of Gas Phase Structural Biology. Structure, 2013, 21, 1541-1550.	1.6	143
90	Gas-Phase Unfolding and Disassembly Reveals Stability Differences in Ligand-Bound Multiprotein Complexes. Chemistry and Biology, 2009, 16, 382-390.	6.2	141

#	Article	IF	CITATIONS
91	Advances in the Mass Spectrometry of Membrane Proteins: From Individual Proteins to Intact Complexes. Annual Review of Biochemistry, 2011, 80, 247-271.	5.0	141
92	Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase. Nature, 2016, 539, 118-122.	13.7	141
93	<i>Mass</i> ign: An Assignment Strategy for Maximizing Information from the Mass Spectra of Heterogeneous Protein Assemblies. Analytical Chemistry, 2012, 84, 2939-2948.	3.2	140
94	Protein complexes gain momentum. Current Opinion in Structural Biology, 2002, 12, 729-734.	2.6	138
95	Travelingâ€wave ion mobility mass spectrometry of protein complexes: accurate calibrated collision crossâ€sections of human insulin oligomers. Rapid Communications in Mass Spectrometry, 2012, 26, 1181-1193.	0.7	138
96	Structural insights into the lipid and ligand regulation of serotonin receptors. Nature, 2021, 592, 469-473.	13.7	138
97	Quantifying the stabilizing effects of protein–ligand interactions in the gas phase. Nature Communications, 2015, 6, 8551.	5.8	136
98	Defining the mechanism of polymerization in the serpinopathies. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17146-17151.	3.3	135
99	Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. Nature Chemical Biology, 2012, 8, 960-962.	3.9	135
100	Heptameric (L12)6/L10 rather than canonical pentameric complexes are found by tandem MS of intact ribosomes from thermophilic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8192-8197.	3.3	134
101	The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends in Cell Biology, 2013, 23, 1-8.	3.6	134
102	Structural evolution of p53, p63, and p73: Implication for heterotetramer formation. Proceedings of the United States of America, 2009, 106, 17705-17710.	3.3	133
103	Symmetrical Modularity of the COP9 Signalosome Complex Suggests its Multifunctionality. Structure, 2009, 17, 31-40.	1.6	133
104	Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nature Structural and Molecular Biology, 2011, 18, 14-19.	3.6	128
105	Steroid-based facial amphiphiles for stabilization and crystallization of membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1203-11.	3.3	127
106	Architecture of eukaryotic mRNA $3\hat{a}\in^2$ -end processing machinery. Science, 2017, 358, 1056-1059.	6.0	124
107	Subunit Architecture of Intact Protein Complexes from Mass Spectrometry and Homology Modeling. Accounts of Chemical Research, 2008, 41, 617-627.	7.6	123
108	αB-Crystallin Polydispersity Is a Consequence of Unbiased Quaternary Dynamics. Journal of Molecular Biology, 2011, 413, 297-309.	2.0	122

7

#	Article	IF	CITATIONS
109	Comparative cross-linking and mass spectrometry of an intact F-type ATPase suggest a role for phosphorylation. Nature Communications, 2013, 4, 1985.	5.8	122
110	Optimal Synthetic Glycosylation of a Therapeutic Antibody. Angewandte Chemie - International Edition, 2016, 55, 2361-2367.	7.2	122
111	Membrane Protein–Lipid Interactions Probed Using Mass Spectrometry. Annual Review of Biochemistry, 2019, 88, 85-111.	5.0	121
112	Integrating Ion Mobility Mass Spectrometry with Molecular Modelling to Determine the Architecture of Multiprotein Complexes. PLoS ONE, 2010, 5, e12080.	1.1	119
113	Correlating Solution Binding and ESI-MS Stabilities by Incorporating Solvation Effects in a Confined Cucurbit[8]uril System. Journal of Physical Chemistry B, 2010, 114, 8606-8615.	1.2	118
114	The Role of the Detergent Micelle in Preserving the Structure of Membrane Proteins in the Gas Phase. Angewandte Chemie - International Edition, 2015, 54, 4577-4581.	7.2	117
115	An electron transfer path connects subunits of a mycobacterial respiratory supercomplex. Science, 2018, 362, .	6.0	117
116	Structural Characterization of the Human Eukaryotic Initiation Factor 3 Protein Complex by Mass Spectrometry. Molecular and Cellular Proteomics, 2007, 6, 1135-1146.	2.5	116
117	Tandem Differential Mobility Analysis-Mass Spectrometry Reveals Partial Gas-Phase Collapse of the GroEL Complex. Journal of Physical Chemistry B, 2011, 115, 3614-3621.	1.2	116
118	A subset of annular lipids is linked to the flippase activity of an ABC transporter. Nature Chemistry, 2015, 7, 255-262.	6.6	112
119	The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature, 2021, 593, 125-129.	13.7	112
120	Combining native and â€~omics' mass spectrometry to identify endogenous ligands bound to membrane proteins. Nature Methods, 2020, 17, 505-508.	9.0	111
121	Structural Modeling of Heteromeric Protein Complexes from Disassembly Pathways and Ion Mobility-Mass Spectrometry. Structure, 2012, 20, 1596-1609.	1.6	110
122	Subunit Exchange of Polydisperse Proteins. Journal of Biological Chemistry, 2005, 280, 14485-14491.	1.6	109
123	Experimental characterization of disordered and ordered aggregates populated during the process of amyloid fibril formation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7828-7833.	3.3	109
124	Intrinsically Disordered Protein Threads Through the Bacterial Outer-Membrane Porin OmpF. Science, 2013, 340, 1570-1574.	6.0	109
125	A novel mechanoâ€enzymatic cleavage mechanism underlies transthyretin amyloidogenesis. EMBO Molecular Medicine, 2015, 7, 1337-1349.	3.3	109
126	Structure of native lens connexin 46/50 intercellular channels by cryo-EM. Nature, 2018, 564, 372-377.	13.7	107

8

#	Article	IF	CITATIONS
127	Human Antibodies that Slow Erythrocyte Invasion Potentiate Malaria-Neutralizing Antibodies. Cell, 2019, 178, 216-228.e21.	13.5	107
128	Screening Transthyretin Amyloid Fibril Inhibitors. Structure, 2002, 10, 851-863.	1.6	106
129	Observation of the noncovalent assembly and disassembly pathways of the chaperone complex MtGimC by mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14151-14155.	3.3	102
130	Characterising electrosprayed biomolecules using tandem-MS—the noncovalent GroEL chaperonin assembly. International Journal of Mass Spectrometry, 2004, 236, 25-32.	0.7	102
131	Efficient protein production inspired by how spiders make silk. Nature Communications, 2017, 8, 15504.	5.8	102
132	Reduced Global Cooperativity is a Common Feature Underlying the Amyloidogenicity of Pathogenic Lysozyme Mutations. Journal of Molecular Biology, 2005, 346, 773-788.	2.0	100
133	Small Heat Shock Protein Activity Is Regulated by Variable Oligomeric Substructure. Journal of Biological Chemistry, 2008, 283, 28513-28517.	1.6	99
134	Subunit Architecture of Multiprotein Assemblies Determined Using Restraints from Gas-Phase Measurements. Structure, 2009, 17, 1235-1243.	1.6	99
135	Mass spectrometry guided structural biology. Current Opinion in Structural Biology, 2016, 40, 136-144.	2.6	98
136	Kinetic Consequences of the Removal of a Disulfide Bridge on the Folding of Hen Lysozyme. Biochemistry, 1994, 33, 13038-13048.	1.2	97
137	Probing the Lipid Annular Belt by Gasâ€Phase Dissociation of Membrane Proteins in Nanodiscs. Angewandte Chemie - International Edition, 2016, 55, 550-554.	7.2	95
138	N-glycan microheterogeneity regulates interactions of plasma proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8763-8768.	3.3	94
139	MmpL3 is a lipid transporter that binds trehalose monomycolate and phosphatidylethanolamine. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11241-11246.	3.3	94
140	Aβ40 and Aβ42 Amyloid Fibrils Exhibit Distinct Molecular Recycling Properties. Journal of the American Chemical Society, 2011, 133, 6505-6508.	6.6	93
141	A comparative cross-linking strategy to probe conformational changes in protein complexes. Nature Protocols, 2014, 9, 2224-2236.	5.5	93
142	Hsp70 Forms Antiparallel Dimers Stabilized by Post-translational Modifications to Position Clients for Transfer to Hsp90. Cell Reports, 2015, 11, 759-769.	2.9	93
143	Allosteric Inhibition of the SARS oVâ€2 Main Protease: Insights from Mass Spectrometry Based Assays**. Angewandte Chemie - International Edition, 2020, 59, 23544-23548.	7.2	92
144	Dodecameric Structure of the Small Heat Shock Protein Acr1 from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2005, 280, 33419-33425.	1.6	91

#	Article	IF	CITATIONS
145	Proteolytic cleavage of Ser52Pro variant transthyretin triggers its amyloid fibrillogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1539-1544.	3.3	91
146	Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. Protein Science, 1997, 6, 1316-1324.	3.1	90
147	Disassembly of intact multiprotein complexes in the gas phase. Current Opinion in Structural Biology, 1999, 9, 135-141.	2.6	89
148	MacB ABC Transporter Is a Dimer Whose ATPase Activity and Macrolide-binding Capacity Are Regulated by the Membrane Fusion Protein MacA. Journal of Biological Chemistry, 2009, 284, 1145-1154.	1.6	88
149	Structures of a Complete Human V-ATPase Reveal Mechanisms of Its Assembly. Molecular Cell, 2020, 80, 501-511.e3.	4.5	88
150	Heteronuclear NMR investigations of dynamic regions of intact Escherichia coli ribosomes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10949-10954.	3.3	87
151	Tandem Mass Spectrometry of Intact GroELâ^'Substrate Complexes Reveals Substrate-Specific Conformational Changes in thetransRing. Journal of the American Chemical Society, 2006, 128, 4694-4702.	6.6	87
152	Intrinsically Disordered p53 and Its Complexes Populate Compact Conformations in the Gas Phase. Angewandte Chemie - International Edition, 2013, 52, 361-365.	7.2	85
153	Ion mobility–mass spectrometry of a rotary ATPase reveals ATP-induced reduction in conformational flexibility. Nature Chemistry, 2014, 6, 208-215.	6.6	85
154	Identifying key membrane protein lipid interactions using mass spectrometry. Nature Protocols, 2018, 13, 1106-1120.	5.5	85
155	Cryo-EM structures provide insight into how E. coli F1Fo ATP synthase accommodates symmetry mismatch. Nature Communications, 2020, 11, 2615.	5.8	85
156	The Extracellular Chaperone Clusterin Potently Inhibits Human Lysozyme Amyloid Formation by Interacting with Prefibrillar Species. Journal of Molecular Biology, 2007, 369, 157-167.	2.0	84
157	Super-complexes of adhesion GPCRs and neural guidance receptors. Nature Communications, 2016, 7, 11184.	5.8	84
158	The Role of Salt Bridges, Charge Density, and Subunit Flexibility in Determining Disassembly Routes of Protein Complexes. Structure, 2013, 21, 1325-1337.	1.6	82
159	Polypyrimidine Tract Binding Protein Stabilizes the Encephalomyocarditis Virus IRES Structure via Binding Multiple Sites in a Unique Orientation. Molecular Cell, 2009, 34, 556-568.	4.5	81
160	Interaction of the p53 DNA-Binding Domain with Its N-Terminal Extension Modulates the Stability of the p53 Tetramer. Journal of Molecular Biology, 2011, 409, 358-368.	2.0	81
161	Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8251-8256.	3.3	81
162	Structure of the Fanconi anaemia monoubiquitin ligase complex. Nature, 2019, 575, 234-237.	13.7	80

#	Article	IF	CITATIONS
163	State-dependent Lipid Interactions with the A2a Receptor Revealed by MD Simulations Using InÂVivo-Mimetic Membranes. Structure, 2019, 27, 392-403.e3.	1.6	80
164	In Situ Structure of an Intact Lipopolysaccharide-Bound Bacterial Surface Layer. Cell, 2020, 180, 348-358.e15.	13.5	79
165	Architecture and dynamics of an A-kinase anchoring protein 79 (AKAP79) signaling complex. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6426-6431.	3.3	78
166	Structural basis for hijacking siderophore receptors by antimicrobial lasso peptides. Nature Chemical Biology, 2014, 10, 340-342.	3.9	78
167	Ion Mobility Mass Spectrometry of Two Tetrameric Membrane Protein Complexes Reveals Compact Structures and Differences in Stability and Packing. Journal of the American Chemical Society, 2010, 132, 15468-15470.	6.6	77
168	Cytoplasmic TAF2–TAF8–TAF10 complex provides evidence for nuclear holo–TFIID assembly from preformed submodules. Nature Communications, 2015, 6, 6011.	5.8	77
169	Probing Molecular Interactions in Intact Antibody: Antigen Complexes, an Electrospray Time-of-Flight Mass Spectrometry Approach. Biophysical Journal, 2001, 81, 3503-3509.	0.2	74
170	Structural comparison of the vacuolar and Golgi V-ATPases from <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7272-7277.	3.3	73
171	Real-Time Monitoring of Protein Complexes Reveals their Quaternary Organization and Dynamics. Chemistry and Biology, 2008, 15, 246-253.	6.2	72
172	The Effect of Detergent, Temperature, and Lipid on the Oligomeric State of MscL Constructs: Insights from Mass Spectrometry. Chemistry and Biology, 2015, 22, 593-603.	6.2	72
173	Modular detergents tailor the purification and structural analysis of membrane proteins including G-protein coupled receptors. Nature Communications, 2020, 11, 564.	5.8	72
174	Polypyrimidine tract-binding protein stimulates the poliovirus IRES by modulating eIF4G binding. EMBO Journal, 2010, 29, 3710-3722.	3.5	71
175	elF2B is a decameric guanine nucleotide exchange factor with a γ2ε2 tetrameric core. Nature Communications, 2014, 5, 3902.	5.8	71
176	Crystal structure of an invertebrate cytolysin pore reveals unique properties and mechanism of assembly. Nature Communications, 2016, 7, 11598.	5.8	71
177	Structural Basis of Tail-Anchored Membrane Protein Biogenesis by the GET Insertase Complex. Molecular Cell, 2020, 80, 72-86.e7.	4.5	71
178	A â€~Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins. Nature Methods, 2021, 18, 69-75.	9.0	71
179	Significant hydrogen exchange protection in GroELâ€bound DHFR is maintained during iterative rounds of substrate cycling. Protein Science, 1996, 5, 2506-2513.	3.1	70
180	The flight of macromolecular complexes in a mass spectrometer. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 379-391.	1.6	70

#	Article	IF	CITATIONS
181	Interfacing Membrane Mimetics with Mass Spectrometry. Accounts of Chemical Research, 2016, 49, 2459-2467.	7.6	70
182	Structure of a Blinkin-BUBR1 Complex Reveals an Interaction Crucial for Kinetochore-Mitotic Checkpoint Regulation via an Unanticipated Binding Site. Structure, 2011, 19, 1691-1700.	1.6	68
183	Integrating mass spectrometry with MD simulations reveals the role of lipids in Na+/H+ antiporters. Nature Communications, 2017, 8, 13993.	5.8	68
184	Analysis of the subunit organization of the eIF2B complex reveals new insights into its structure and regulation. FASEB Journal, 2014, 28, 2225-2237.	0.2	67
185	Charge Reduction Stabilizes Intact Membrane Protein Complexes for Mass Spectrometry. Journal of the American Chemical Society, 2014, 136, 17010-17012.	6.6	67
186	Quaternary Structure and Catalytic Activity of the Escherichia coli Ribonuclease E Amino-Terminal Catalytic Domain. Biochemistry, 2003, 42, 13848-13855.	1.2	66
187	Engineering a Camelid Antibody Fragment That Binds to the Active Site of Human Lysozyme and Inhibits Its Conversion into Amyloid Fibrils. Biochemistry, 2008, 47, 11041-11054.	1.2	66
188	Structure and Intermolecular Dynamics of Aggregates Populated during Amyloid Fibril Formation Studied by Hydrogen/Deuterium Exchange. Accounts of Chemical Research, 2010, 43, 1072-1079.	7.6	66
189	Ion Mobility-Mass Spectrometry Reveals the Influence of Subunit Packing and Charge on the Dissociation of Multiprotein Complexes. Analytical Chemistry, 2010, 82, 9702-9710.	3.2	66
190	Tools for Understanding Nanoscale Lipid Regulation of Ion Channels. Trends in Biochemical Sciences, 2019, 44, 795-806.	3.7	66
191	Hsp70 Oligomerization Is Mediated by an Interaction between the Interdomain Linker and the Substrate-Binding Domain. PLoS ONE, 2013, 8, e67961.	1.1	66
192	Structural and Functional Characterization of the Bacterial Type III Secretion Export Apparatus. PLoS Pathogens, 2016, 12, e1006071.	2.1	66
193	When proteomics meets structural biology. Trends in Biochemical Sciences, 2010, 35, 522-529.	3.7	65
194	Non-homologous end-joining partners in a helical dance: structural studies of XLF–XRCC4 interactions. Biochemical Society Transactions, 2011, 39, 1387-1392.	1.6	65
195	Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ. Nature Chemistry, 2018, 10, 363-371.	6.6	65
196	Drug Binding Revealed by Tandem Mass Spectrometry of a Proteinâ^'Micelle Complex. Journal of the American Chemical Society, 2004, 126, 14362-14363.	6.6	64
197	The structure of CrgA from Neisseria meningitidis reveals a new octameric assembly state for LysR transcriptional regulators. Nucleic Acids Research, 2009, 37, 4545-4558.	6.5	64
198	Separating and visualising protein assemblies by means of preparative mass spectrometry and microscopy. Journal of Structural Biology, 2010, 172, 161-168.	1.3	64

#	Article	IF	CITATIONS
199	The Catalytic Activity of Ubp6 Enhances Maturation of the Proteasomal Regulatory Particle. Molecular Cell, 2011, 42, 637-649.	4.5	64
200	Structural evidence for Nap1â€dependent H2A–H2B deposition and nucleosome assembly. EMBO Journal, 2016, 35, 1465-1482.	3.5	64
201	Molecular dissection of Alzheimer's disease neuropathology by depletion of serum amyloid P component. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7619-7623.	3.3	63
202	Residual counter ions can stabilise a large protein complex in the gas phase. International Journal of Mass Spectrometry, 2010, 298, 91-98.	0.7	63
203	Different Modes of Lipid Binding to Membrane Proteins Probed by Mass Spectrometry. Journal of the American Chemical Society, 2015, 137, 5240-5247.	6.6	63
204	Dynamic Protein Complexes: Insights from Mass Spectrometry. Journal of Biological Chemistry, 2001, 276, 46685-46688.	1.6	62
205	Tandem Mass Spectrometry Defines the Stoichiometry and Quaternary Structural Arrangement of Tryptophan Molecules in the Multiprotein Complex TRAP. Journal of the American Chemical Society, 2004, 126, 5950-5951.	6.6	62
206	Structure and Function of a Novel Type of ATP-dependent Clp Protease. Journal of Biological Chemistry, 2009, 284, 13519-13532.	1.6	62
207	SpyAvidin Hubs Enable Precise and Ultrastable Orthogonal Nanoassembly. Journal of the American Chemical Society, 2014, 136, 12355-12363.	6.6	62
208	Characterisation of <i>Shigella</i> â€Spa33 and <i>Thermotoga</i> â€FliM/N reveals a new model for Câ€ring assembly in T3SS. Molecular Microbiology, 2016, 99, 749-766.	1.2	62
209	Defining the Structural Basis of Human Plasminogen Binding by Streptococcal Surface Enolase. Journal of Biological Chemistry, 2009, 284, 17129-17137.	1.6	61
210	The regulatory protein RraA modulates RNA-binding and helicase activities of the <i>E. coli</i> RNA degradosome. Rna, 2010, 16, 553-562.	1.6	61
211	Dynamic protein ligand interactions–Âinsights from <scp>MS</scp> . FEBS Journal, 2014, 281, 1950-1964.	2.2	61
212	Mass-Selective Soft-Landing of Protein Assemblies with Controlled Landing Energies. Analytical Chemistry, 2014, 86, 8321-8328.	3.2	61
213	Mass spectrometry captures off-target drug binding and provides mechanistic insights into the human metalloprotease ZMPSTE24. Nature Chemistry, 2016, 8, 1152-1158.	6.6	61
214	Structure of BRCA1-BRCT/Abraxas Complex Reveals Phosphorylation-Dependent BRCT Dimerization at DNA Damage Sites. Molecular Cell, 2016, 61, 434-448.	4.5	61
215	How to Switch Off a Histidine Kinase: Crystal Structure of Geobacillus stearothermophilus KinB with the inhibitor Sda. Journal of Molecular Biology, 2009, 386, 163-177.	2.0	60
216	Multimeric assembly and biochemical characterization of the Trax–translin endonuclease complex. Nature Structural and Molecular Biology, 2011, 18, 658-664.	3.6	60

#	Article	IF	CITATIONS
217	Joining Forces: Integrating Proteomics and Cross-linking with the Mass Spectrometry of Intact Complexes. Molecular and Cellular Proteomics, 2012, 11, R111.014027.	2.5	60
218	GroEL accelerates the refolding of hen lysozyme without changing its folding mechanism. Nature Structural Biology, 1999, 6, 683-690.	9.7	59
219	L55P Transthyretin Accelerates Subunit Exchange and Leads to Rapid Formation of Hybrid Tetramers*. Journal of Biological Chemistry, 2005, 280, 41667-41674.	1.6	59
220	Heterogeneity and dynamics in the assembly of the Heat Shock Protein 90 chaperone complexes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17939-17944.	3.3	59
221	Discrete, multi-component complexes with cucurbit[8]uril in the gas-phase. Chemical Communications, 2009, , 644.	2.2	58
222	Detergent Release Prolongs the Lifetime of Native-like Membrane Protein Conformations in the Gas-Phase. Journal of the American Chemical Society, 2013, 135, 6078-6083.	6.6	58
223	Mass Spectrometry Defines the C-Terminal Dimerization Domain and Enables Modeling of the Structure of Full-Length OmpA. Structure, 2014, 22, 781-790.	1.6	58
224	Elongation/Termination Factor Exchange Mediated by PP1 Phosphatase Orchestrates Transcription Termination. Cell Reports, 2018, 25, 259-269.e5.	2.9	58
225	Gas-phase dissociation pathways of a tetrameric protein complex. International Journal of Mass Spectrometry, 2003, 230, 193-200.	0.7	57
226	Acetylation of L12 Increases Interactions in the Escherichia coli Ribosomal Stalk Complex. Journal of Molecular Biology, 2008, 380, 404-414.	2.0	57
227	Structural basis for DNA recognition and loading into a viral packaging motor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 811-816.	3.3	57
228	A new class of hybrid secretion system is employed in Pseudomonas amyloid biogenesis. Nature Communications, 2017, 8, 263.	5.8	56
229	Dissection of multi-protein complexes using mass spectrometry: Subunit interactions in transthyretin and retinol-binding protein complexes. , 1998, 33, 3-11.		55
230	Trapping of palindromic ligands within native transthyretin prevents amyloid formation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20483-20488.	3.3	55
231	Advancing Cell Biology Through Proteomics in Space and Time (PROSPECTS). Molecular and Cellular Proteomics, 2012, 11, 0112.017731.	2.5	55
232	A five-level classification system for proteoform identifications. Nature Methods, 2019, 16, 939-940.	9.0	55
233	Evidence for Micellar Structure in the Gas Phase. Journal of the American Chemical Society, 2007, 129, 8740-8746.	6.6	54
234	Methodology for measuring conformation of solvent-disrupted protein subunits using T-WAVE ion mobility MS: An investigation into eukaryotic initiation factors. Journal of the American Society for Mass Spectrometry, 2009, 20, 1699-1706.	1.2	54

#	Article	IF	CITATIONS
235	A sliding selectivity scale for lipid binding to membrane proteins. Current Opinion in Structural Biology, 2016, 39, 54-60.	2.6	54
236	Mass Spectrometry Quantifies Protein Interactions—From Molecular Chaperones to Membrane Porins. Angewandte Chemie - International Edition, 2014, 53, 14002-14015.	7.2	53
237	Structures of CD6 and Its Ligand CD166 Give Insight into Their Interaction. Structure, 2015, 23, 1426-1436.	1.6	53
238	Use of a Microchip Device Coupled with Mass Spectrometry for Ligand Screening of a Multi-Protein Target. Analytical Chemistry, 2003, 75, 4937-4941.	3.2	52
239	A combined computational and structural model of the full-length human prolactin receptor. Nature Communications, 2016, 7, 11578.	5.8	52
240	Ligand binding to a G protein–coupled receptor captured in a mass spectrometer. Science Advances, 2017, 3, e1701016.	4.7	52
241	The Structure and Biochemical Properties of the Human Spliceosomal Protein U1C. Journal of Molecular Biology, 2004, 341, 185-198.	2.0	51
242	Stoichiometry and Localization of the Stator Subunits E and Gin Thermus thermophilus H+-ATPase/Synthase. Journal of Biological Chemistry, 2008, 283, 2595-2603.	1.6	51
243	Solution NMR Investigation of the CD95/FADD Homotypic Death Domain Complex Suggests Lack of Engagement of the CD95 C Terminus. Structure, 2010, 18, 1378-1390.	1.6	51
244	Integrative Modelling Coupled with Ion Mobility Mass Spectrometry Reveals Structural Features of the Clamp Loader in Complex with Single-Stranded DNA Binding Protein. Journal of Molecular Biology, 2013, 425, 4790-4801.	2.0	51
245	Generation of a synthetic GlcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation. Nature Communications, 2015, 6, 7978.	5.8	51
246	Key features of an Hsp70 chaperone allosteric landscape revealed by ion-mobility native mass spectrometry and double electron-electron resonance. Journal of Biological Chemistry, 2017, 292, 8773-8785.	1.6	51
247	Mass Spectrometry Reveals the Missing Links in the Assembly Pathway of the Bacterial 20 S Proteasome. Journal of Biological Chemistry, 2007, 282, 18448-18457.	1.6	50
248	Quadrupole-Time-of-Flight Mass Spectrometer Modified for Higher-Energy Dissociation Reduces Protein Assemblies to Peptide Fragments. Analytical Chemistry, 2009, 81, 1270-1274.	3.2	50
249	The Small Heat-Shock Proteins HSPB2 and HSPB3 Form Well-defined Heterooligomers in a Unique 3 to 1 Subunit Ratio. Journal of Molecular Biology, 2009, 393, 1022-1032.	2.0	50
250	Structural basis for <scp>P</scp> an3 binding to <scp>P</scp> an2 and its function in <scp>mRNA</scp> recruitment and deadenylation. EMBO Journal, 2014, 33, 1514-1526.	3.5	50
251	A bipartite structural organization defines the SERINC family of HIV-1 restriction factors. Nature Structural and Molecular Biology, 2020, 27, 78-83.	3.6	50
252	Dissociation of Intact Escherichia coli Ribosomes in a Mass Spectrometer. Journal of Biological Chemistry, 2003, 278, 1259-1267.	1.6	49

15

#	Article	IF	CITATIONS
253	Evidence for the Assembly of a Bacterial Tripartite Multidrug Pump with a Stoichiometry of 3:6:3. Journal of Biological Chemistry, 2011, 286, 26900-26912.	1.6	49
254	Mass spectrometry: From plasma proteins to mitochondrial membranes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2814-2820.	3.3	49
255	Probing <i>N</i> -glycoprotein microheterogeneity by lectin affinity purification-mass spectrometry analysis. Chemical Science, 2019, 10, 5146-5155.	3.7	49
256	Multimers of the fibroblast growth factor (FGF)–FGF receptor–saccharide complex are formed on long oligomers of heparin. Biochemical Journal, 2006, 393, 741-748.	1.7	48
257	Ultraslow oligomerization equilibria of p53 and its implications. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14327-14332.	3.3	48
258	Gas-phase protein assemblies: Unfolding landscapes and preserving native-like structures using noncovalent adducts. Chemical Physics Letters, 2012, 524, 1-9.	1.2	48
259	Relating glycoprotein structural heterogeneity to function – insights from native mass spectrometry. Current Opinion in Structural Biology, 2019, 58, 241-248.	2.6	48
260	Mass spectrometry of intact ribosomes. FEBS Letters, 2005, 579, 943-947.	1.3	47
261	Mass Spectrometry Reveals Stable Modules in holo and apo RNA Polymerases I and III. Structure, 2011, 19, 90-100.	1.6	47
262	Impact of the native-state stability of human lysozyme variants on protein secretion by Pichia pastoris. FEBS Journal, 2006, 273, 711-720.	2.2	46
263	Chemical cross-linking of the chloroplast localized small heat-shock protein, Hsp21, and the model substrate citrate synthase. Protein Science, 2007, 16, 1464-1478.	3.1	46
264	Isoforms of U1-70k Control Subunit Dynamics in the Human Spliceosomal U1 snRNP. PLoS ONE, 2009, 4, e7202.	1.1	46
265	Native Desorption Electrospray Ionization Liberates Soluble and Membrane Protein Complexes from Surfaces. Angewandte Chemie - International Edition, 2017, 56, 14463-14468.	7.2	46
266	The Crystal Structure of the N-Terminal Region of BUB1 Provides Insight into the Mechanism of BUB1 Recruitment to Kinetochores. Structure, 2009, 17, 105-116.	1.6	45
267	The Quaternary Organization and Dynamics of the Molecular Chaperone HSP26 Are Thermally Regulated. Chemistry and Biology, 2010, 17, 1008-1017.	6.2	45
268	The human Na+/H+ exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2. BMC Biology, 2016, 14, 31.	1.7	45
269	Heterogeneity of Glycan Processing on Trimeric SARS-CoV-2 Spike Protein Revealed by Charge Detection Mass Spectrometry. Journal of the American Chemical Society, 2021, 143, 3959-3966.	6.6	45
270	Rationalising Lysozyme Amyloidosis: Insights from the Structure and Solution Dynamics of T70N Lysozyme. Journal of Molecular Biology, 2005, 352, 823-836.	2.0	43

#	Article	IF	CITATIONS
271	Retinol and Retinol-Binding Protein Stabilize Transthyretin <i>via</i> Formation of Retinol Transport Complex. ACS Chemical Biology, 2010, 5, 1137-1146.	1.6	43
272	Elucidation of Drug Metabolite Structural Isomers Using Molecular Modeling Coupled with Ion Mobility Mass Spectrometry. Analytical Chemistry, 2016, 88, 2273-2280.	3.2	43
273	Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins. Nature Structural and Molecular Biology, 2018, 25, 279-288.	3.6	43
274	Regional and segmental flexibility of antibodies in interaction with antigens of different size. FEBS Journal, 2006, 273, 1476-1487.	2.2	42
275	Two-phase dynamic combinatorial discovery of a spermine transporter. Chemical Communications, 2009, , 3708.	2.2	42
276	A Nanobody Binding to Non-Amyloidogenic Regions of the Protein Human Lysozyme Enhances Partial Unfolding but Inhibits Amyloid Fibril Formation. Journal of Physical Chemistry B, 2013, 117, 13245-13258.	1.2	42
277	The interchange of immunophilins leads to parallel pathways and different intermediates in the assembly of Hsp90 glucocorticoid receptor complexes. Cell Discovery, 2016, 2, 16002.	3.1	42
278	Pyocin S5 Import into Pseudomonas aeruginosa Reveals a Generic Mode of Bacteriocin Transport. MBio, 2020, 11, .	1.8	42
279	Insights into SusCD-mediated glycan import by a prominent gut symbiont. Nature Communications, 2021, 12, 44.	5.8	42
280	Mass Spectrometry of Ribosomes from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 42750-42757.	1.6	41
281	Dynamics of an LPS translocon induced by substrate and an antimicrobial peptide. Nature Chemical Biology, 2021, 17, 187-195.	3.9	41
282	Capturing a rhodopsin receptor signalling cascade across a native membrane. Nature, 2022, 604, 384-390.	13.7	41
283	Phospholipid Complexation and Association with Apolipoprotein C-II: Insights from Mass Spectrometry. Biophysical Journal, 2003, 85, 3802-3812.	0.2	40
284	Dimer interface of bovine cytochrome <i>c</i> oxidase is influenced by local posttranslational modifications and lipid binding. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8230-8235.	3.3	40
285	Unraveling the Composition and Behavior of Heterogeneous Lipid Nanodiscs by Mass Spectrometry. Analytical Chemistry, 2016, 88, 6199-6204.	3.2	40
286	The Tetrameric Plant Lectin BanLec Neutralizes HIV through Bidentate Binding to Specific Viral Glycans. Structure, 2017, 25, 773-782.e5.	1.6	39
287	Lipid binding attenuates channel closure of the outer membrane protein OmpF. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6691-6696.	3.3	39
288	Structural determinants of lipid specificity within Ups/PRELI lipid transfer proteins. Nature Communications, 2019, 10, 1130.	5.8	39

#	Article	IF	CITATIONS
289	Topological Models of Heteromeric Protein Assemblies from Mass Spectrometry: Application to the Yeast eIF3:eIF5 Complex. Chemistry and Biology, 2015, 22, 117-128.	6.2	38
290	A Multidrug ABC Transporter with a Taste for Salt. PLoS ONE, 2009, 4, e6137.	1.1	38
291	The â€~sticky business' of cleaning gas-phase membrane proteins: a detergent oriented perspective. Physical Chemistry Chemical Physics, 2012, 14, 14439.	1.3	37
292	The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation. ELife, 2015, 4, e07410.	2.8	37
293	The polypyrimidine tract binding protein is a monomer. Rna, 2005, 11, 1803-1808.	1.6	35
294	A nearâ€native state on the slow refolding pathway of hen lysozyme. Protein Science, 1999, 8, 35-44.	3.1	35
295	Dehydrated but unharmed. Nature, 2009, 462, 576-577.	13.7	35
296	Structure and Function of the Escherichia coli Tol-Pal Stator Protein TolR. Journal of Biological Chemistry, 2015, 290, 26675-26687.	1.6	35
297	The Effects of Sodium Ions on Ligand Binding and Conformational States of G Protein-Coupled Receptors—Insights from Mass Spectrometry. Journal of the American Chemical Society, 2021, 143, 4085-4089.	6.6	35
298	Probing the nature of interactions in SH2 binding interfaces–evidence from electrospray ionization mass spectrometry. Protein Science, 1999, 8, 1962-1970.	3.1	34
299	Effects of antibody affinity and antigen valence on molecular forms of immune complexes. Molecular Immunology, 2009, 47, 357-364.	1.0	34
300	Molecular basis for inner kinetochore configuration through <scp>RWD</scp> domain–peptide interactions. EMBO Journal, 2017, 36, 3458-3482.	3.5	34
301	Structural and Functional Basis for Lipid Synergy on the Activity of the Antibacterial Peptide ABC Transporter McjD. Journal of Biological Chemistry, 2016, 291, 21656-21668.	1.6	33
302	Carbene Footprinting Reveals Binding Interfaces of a Multimeric Membraneâ€Spanning Protein. Angewandte Chemie - International Edition, 2017, 56, 14873-14877.	7.2	33
303	Structural Basis for Natural Product Selection and Export by Bacterial ABC Transporters. ACS Chemical Biology, 2018, 13, 1598-1609.	1.6	33
304	A Massâ€Spectrometryâ€Based Approach to Distinguish Annular and Specific Lipid Binding to Membrane Proteins. Angewandte Chemie - International Edition, 2020, 59, 3523-3528.	7.2	33
305	Assembly and regulation of the chlorhexidine-specific efflux pump Acel. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17011-17018.	3.3	33
306	Biophysical Properties of the Eukaryotic Ribosomal Stalk. Biochemistry, 2010, 49, 924-933.	1.2	32

#	Article	IF	CITATIONS
307	Formation and Dissociation Processes of Gas-Phase Detergent Micelles. Langmuir, 2012, 28, 7160-7167.	1.6	32
308	A new window into the molecular physiology of membrane proteins. Journal of Physiology, 2015, 593, 355-362.	1.3	32
309	Direct binding of CEP85 to STIL ensures robust PLK4 activation and efficient centriole assembly. Nature Communications, 2018, 9, 1731.	5.8	32
310	Characterisation of serpin polymers in vitro and in vivo. Methods, 2011, 53, 255-266.	1.9	31
311	Opening of the Outer Membrane Protein Channel in Tripartite Efflux Pumps Is Induced by Interaction with the Membrane Fusion Partner. Journal of Biological Chemistry, 2011, 286, 5484-5493.	1.6	31
312	A Hydrodynamic Comparison of Solution and Gas Phase Proteins and Their Complexes. Journal of Physical Chemistry B, 2014, 118, 8489-8495.	1.2	31
313	Structure and elevator mechanism of the mammalian sodium/proton exchanger NHE9. EMBO Journal, 2020, 39, 4541-4559.	3.5	31
314	Three Binding Sites for Stalk Protein Dimers Are Generally Present in Ribosomes from Archaeal Organism. Journal of Biological Chemistry, 2007, 282, 32827-32833.	1.6	30
315	Low Charge and Reduced Mobility of Membrane Protein Complexes Has Implications for Calibration of Collision Cross Section Measurements. Analytical Chemistry, 2016, 88, 5879-5884.	3.2	30
316	The use of sonicated lipid vesicles for mass spectrometry of membrane protein complexes. Nature Protocols, 2020, 15, 1690-1706.	5.5	30
317	Solvent Effects on the Conformation of the Transmembrane Peptide Gramicidin A: Insights from Electrospray Ionization Mass Spectrometry. Biophysical Journal, 2000, 78, 1010-1017.	0.2	29
318	Mass Spectrometry Defines the Stoichiometry of Ribosomal Stalk Complexes across the Phylogenetic Tree. Molecular and Cellular Proteomics, 2010, 9, 1774-1783.	2.5	29
319	Evidence that the catenane form of CS2 hydrolase is not an artefact. Chemical Communications, 2013, 49, 7770.	2.2	29
320	eIF2 interactions with initiator tRNA and eIF2B are regulated by post-translational modifications and conformational dynamics. Cell Discovery, 2015, 1, 15020.	3.1	29
321	Detergent-free Lipodisq Nanoparticles Facilitate High-Resolution Mass Spectrometry of Folded Integral Membrane Proteins. Nano Letters, 2021, 21, 2824-2831.	4.5	29
322	Architecture of TAF11/TAF13/TBP complex suggests novel regulation properties of general transcription factor TFIID. ELife, 2017, 6, .	2.8	29
323	A Monte Carlo approach for assessing the specificity of protein oligomers observed in nano-electrospray mass spectra. International Journal of Mass Spectrometry, 2009, 283, 169-177.	0.7	28
324	Mass Spectrometry—From Peripheral Proteins to Membrane Motors. Journal of Molecular Biology, 2012, 423, 1-13.	2.0	28

#	Article	IF	CITATIONS
325	Infrared Laser Activation of Soluble and Membrane Protein Assemblies in the Gas Phase. Analytical Chemistry, 2016, 88, 7060-7067.	3.2	28
326	Multiple Roles of SARS-CoV-2 N Protein Facilitated by Proteoform-Specific Interactions with RNA, Host Proteins, and Convalescent Antibodies. Jacs Au, 2021, 1, 1147-1157.	3.6	28
327	Allosteric Activation of the ATPase Activity of the Escherichia coli RhlB RNA Helicase. Journal of Biological Chemistry, 2008, 283, 5567-5576.	1.6	27
328	Small Molecule Inhibitors of Disulfide Bond Formation by the Bacterial DsbA–DsbB Dual Enzyme System. ACS Chemical Biology, 2015, 10, 957-964.	1.6	27
329	Structure, mechanism and lipid-mediated remodeling of the mammalian Na+/H+ exchanger NHA2. Nature Structural and Molecular Biology, 2022, 29, 108-120.	3.6	27
330	The anti-sigma factor RsrA responds to oxidative stress by reburying its hydrophobic core. Nature Communications, 2016, 7, 12194.	5.8	26
331	Effects of Detergent Micelles on Lipid Binding to Proteins in Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2017, 89, 7425-7430.	3.2	26
332	Self-assembly of toroidal proteins explored using native mass spectrometry. Chemical Science, 2018, 9, 6099-6106.	3.7	26
333	The structures of cytosolic and plastid-located glutamine synthetases from <i>Medicago truncatula</i> reveal a common and dynamic architecture. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 981-993.	2.5	25
334	The importance of the membrane for biophysical measurements. Nature Chemical Biology, 2020, 16, 1285-1292.	3.9	25
335	The molecular basis of regulation of bacterial capsule assembly by Wzc. Nature Communications, 2021, 12, 4349.	5.8	25
336	Macromolecular organization of the Yersinia pestis capsular F1 antigen: Insights from time-of-flight mass spectrometry. Protein Science, 2008, 10, 2408-2413.	3.1	24
337	Structural Properties of the Human Acidic Ribosomal P Proteins Forming the P1-P2 Heterocomplex. Journal of Biochemistry, 2008, 143, 169-177.	0.9	24
338	The p97-FAF1 Protein Complex Reveals a Common Mode of p97 Adaptor Binding. Journal of Biological Chemistry, 2014, 289, 12077-12084.	1.6	24
339	Cryo-EM structure of human GPR158 receptor coupled to the RCS7-GÎ ² 5 signaling complex. Science, 2022, 375, 86-91.	6.0	24
340	Selective association of protein molecules followed by mass spectrometry. Protein Science, 1999, 8, 1368-1370.	3.1	23
341	The unusual mycobacterial chaperonins: evidence for <i>in vivo</i> oligomerization and specialization of function. Molecular Microbiology, 2012, 85, 934-944.	1.2	23
342	X-ray free-electron laser studies reveal correlated motion during isopenicillin <i>N</i> synthase catalysis. Science Advances, 2021, 7, .	4.7	23

#	Article	IF	CITATIONS
343	Dissection of multiâ€protein complexes using mass spectrometry: Subunit interactions in transthyretin and retinolâ€binding protein complexes. Proteins: Structure, Function and Bioinformatics, 1998, 33, 3-11.	1.5	23
344	Mechanism and Rates of Exchange of L7/L12 between Ribosomes and the Effects of Binding EF-G. ACS Chemical Biology, 2012, 7, 1120-1127.	1.6	22
345	Dodecyl Maltoside Protects Membrane Proteins In Vacuo. Biophysical Journal, 2013, 105, 648-656.	0.2	22
346	Mass spectrometry captures structural intermediates in protein fiber self-assembly. Chemical Communications, 2017, 53, 3319-3322.	2.2	22
347	Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization. Nature Communications, 2021, 12, 629.	5.8	22
348	Architecture of cell–cell junctions in situ reveals a mechanism for bacterial biofilm inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
349	Molecular recognition between <i>Escherichia coli</i> enolase and ribonuclease E. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1036-1040.	2.5	21
350	Assembly states of the nucleosome assembly protein 1 (NAP-1) revealed by sedimentation velocity and non-denaturing MS. Biochemical Journal, 2011, 436, 101-112.	1.7	21
351	Negative Ions Enhance Survival of Membrane Protein Complexes. Journal of the American Society for Mass Spectrometry, 2016, 27, 1099-1104.	1.2	21
352	The structure of serum resistance-associated protein and its implications for human African trypanosomiasis. Nature Microbiology, 2018, 3, 295-301.	5.9	21
353	A new azobenzene-based design strategy for detergents in membrane protein research. Chemical Science, 2020, 11, 3538-3546.	3.7	21
354	Probing membrane protein–lipid interactions. Current Opinion in Structural Biology, 2021, 69, 78-85.	2.6	21
355	A Single Subunit Directs the Assembly of the Escherichia coli DNA Sliding Clamp Loader. Structure, 2010, 18, 285-292.	1.6	20
356	Structure of Cu(I)-Bound DJ-1 Reveals a Biscysteinate Metal Binding Site at the Homodimer Interface: Insights into Mutational Inactivation of DJ-1 in Parkinsonism. Journal of the American Chemical Society, 2013, 135, 15974-15977.	6.6	20
357	The Significance of the Location of Mutations for the Native-State Dynamics of Human Lysozyme. Biophysical Journal, 2016, 111, 2358-2367.	0.2	20
358	Three-Dimensional Architecture of the Human BRCA1-A Histone Deubiquitinase Core Complex. Cell Reports, 2016, 17, 3099-3106.	2.9	20
359	From molecular chaperones to membrane motors: through the lens of a mass spectrometrist. Biochemical Society Transactions, 2017, 45, 251-260.	1.6	20
360	Dynamic architecture of the Escherichia coli structural maintenance of chromosomes (SMC) complex, MukBEF. Nucleic Acids Research, 2019, 47, 9696-9707.	6.5	20

#	Article	IF	CITATIONS
361	Peptidoglycan biosynthesis is driven by lipid transfer along enzyme-substrate affinity gradients. Nature Communications, 2022, 13, 2278.	5.8	20
362	Protein complexes take flight. , 2002, 9, 505-506.		19
363	The emerging role of MS in structure elucidation of protein–nucleic acid complexes. Biochemical Society Transactions, 2008, 36, 723-731.	1.6	19
364	Linking structural change with functional regulation—insights from mass spectrometry. Current Opinion in Structural Biology, 2012, 22, 44-51.	2.6	19
365	Structural Model of Lymphocyte Receptor NKR-P1C Revealed by Mass Spectrometry and Molecular Modeling. Analytical Chemistry, 2013, 85, 1597-1604.	3.2	19
366	The Different Effects of Substrates and Nucleotides on the Complex Formation of ABC Transporters. Structure, 2019, 27, 651-659.e3.	1.6	19
367	Phosphoâ€regulation, nucleotide binding and ion access control in potassiumâ€chloride cotransporters. EMBO Journal, 2021, 40, e107294.	3.5	19
368	Flexible membrane proteins: functional dynamics captured by mass spectrometry. Current Opinion in Structural Biology, 2014, 28, 122-130.	2.6	18
369	Controlling release, unfolding and dissociation of membrane protein complexes in the gas phase through collisional cooling. Chemical Communications, 2015, 51, 15582-15584.	2.2	18
370	Acetylation and phosphorylation control both local and global stability of the chloroplast F1 ATP synthase. Scientific Reports, 2017, 7, 44068.	1.6	18
371	A specific nanobody prevents amyloidogenesis of D76N β2-microglobulin in vitro and modifies its tissue distribution in vivo. Scientific Reports, 2017, 7, 46711.	1.6	18
372	Structural Basis for Silicic Acid Uptake by Higher Plants. Journal of Molecular Biology, 2021, 433, 167226.	2.0	18
373	Weighing the evidence for structure: electrospray ionization mass spectrometry of proteins. Structure, 1995, 3, 861-865.	1.6	17
374	A non-natural variant of human lysozyme (I59T) mimics the in vitro behaviour of the I56T variant that is responsible for a form of familial amyloidosis. Protein Engineering, Design and Selection, 2010, 23, 499-506.	1.0	17
375	Native Desorption Electrospray Ionization Liberates Soluble and Membrane Protein Complexes from Surfaces. Angewandte Chemie, 2017, 129, 14655-14660.	1.6	17
376	Structure and function of LCI1: a plasma membrane CO 2 channel in the Chlamydomonas CO 2 concentrating mechanism. Plant Journal, 2020, 102, 1107-1126.	2.8	17
377	Structure and Location of the Regulatory β Subunits in the (αβγΠ)4 Phosphorylase Kinase Complex. Journal of Biological Chemistry, 2012, 287, 36651-36661.	1.6	16
378	Bifurcated binding of the OmpF receptor underpins import of the bacteriocin colicin N into Escherichia coli. Journal of Biological Chemistry, 2020, 295, 9147-9156.	1.6	16

#	Article	IF	CITATIONS
379	Mutating the Tight-Dimer Interface of Dihydrodipicolinate Synthase Disrupts the Enzyme Quaternary Structure: Toward a Monomeric Enzyme. Biochemistry, 2008, 47, 12108-12117.	1.2	15
380	The N-Terminal Region of the Human Autophagy Protein ATG16L1 Contains a Domain That Folds into a Helical Structure Consistent with Formation of a Coiled-Coil. PLoS ONE, 2013, 8, e76237.	1.1	15
381	Potassium Is Critical for the Ni(II)-Responsive DNA-Binding Activity of Escherichia coli NikR. Journal of the American Chemical Society, 2010, 132, 1506-1507.	6.6	14
382	In pursuit of female chemists. Nature, 2011, 476, 273-275.	13.7	14
383	Flexible Stoichiometry and Asymmetry of the PIDDosome Core Complex by Heteronuclear NMR Spectroscopy and Mass Spectrometry. Journal of Molecular Biology, 2015, 427, 737-752.	2.0	14
384	Insights into Eukaryotic Translation Initiation from Mass Spectrometry of Macromolecular Protein Assemblies. Journal of Molecular Biology, 2016, 428, 344-356.	2.0	14
385	A constricted opening in Kir channels does not impede potassium conduction. Nature Communications, 2020, 11, 3024.	5.8	14
386	Low-energy electron holography imaging of conformational variability of single-antibody molecules from electrospray ion beam deposition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
387	Competitive binding to the oligopeptide binding protein, OppA: In-trap cleanup in an fourier transform ion cyclotron resonance mass spectrometer. Journal of the American Society for Mass Spectrometry, 2000, 11, 1023-1026.	1.2	13
388	Tsp36, a tapeworm small heat-shock protein with a duplicated α-crystallin domain, forms dimers and tetramers with good chaperone-like activity. Proteins: Structure, Function and Bioinformatics, 2004, 57, 109-117.	1.5	13
389	Elevated copy number of L-A virus in yeast mutant strains defective in ribosomal stalk. Biochemical and Biophysical Research Communications, 2007, 355, 575-580.	1.0	13
390	Protein-nucleic acid complexes and the role of mass spectrometry in their structure determination. Critical Reviews in Biochemistry and Molecular Biology, 2011, 46, 152-164.	2.3	13
391	Probing the limits of Q-tag bioconjugation of antibodies. Chemical Communications, 2019, 55, 11342-11345.	2.2	13
392	Assembly principles of the human R2TP chaperone complex reveal the presence of R2T and R2P complexes. Structure, 2022, 30, 156-171.e12.	1.6	13
393	A Quantitative Perspective on Hydrophobic Interactions in the Gas-Phase. Current Proteomics, 2011, 8, 47-58.	0.1	12
394	Correlating Glycoforms of DCâ€SIGN with Stability Using a Combination of Enzymatic Digestion and Ion Mobility Mass Spectrometry. Angewandte Chemie - International Edition, 2020, 59, 15560-15564.	7.2	12
395	Dendritic Oligoglycerol Regioisomer Mixtures and Their Utility for Membrane Protein Research. Chemistry - A European Journal, 2021, 27, 2537-2542.	1.7	12
396	Native Mass Spectrometry Meets Glycomics: Resolving Structural Detail and Occupancy of Glycans on Intact Glycoproteins. Analytical Chemistry, 2021, 93, 10435-10443.	3.2	12

#	Article	IF	CITATIONS
397	Mass spectrometry informs the structure and dynamics of membrane proteins involved in lipid and drug transport. Current Opinion in Structural Biology, 2021, 70, 53-60.	2.6	12
398	Acyl carrier protein promotes MukBEF action in Escherichia coli chromosome organization-segregation. Nature Communications, 2021, 12, 6721.	5.8	12
399	Charge Engineering Reveals the Roles of Ionizable Side Chains in Electrospray Ionization Mass Spectrometry. Jacs Au, 2021, 1, 2385-2393.	3.6	12
400	Mass Spectrometry Reveals Differences in Stability and Subunit Interactions between Activated and Nonactivated Conformers of the (αβÎ3Î)4 Phosphorylase Kinase Complex. Molecular and Cellular Proteomics, 2012, 11, 1768-1776.	2.5	11
401	The interaction of the antitoxin DM43 with a snake venom metalloproteinase analyzed by mass spectrometry and surface plasmon resonance. Journal of Mass Spectrometry, 2012, 47, 567-573.	0.7	11
402	Subunit Dynamics and Nucleotide-Dependent Asymmetry of an AAA+ Transcription Complex. Journal of Molecular Biology, 2014, 426, 71-83.	2.0	11
403	Carbene Footprinting Reveals Binding Interfaces of a Multimeric Membraneâ€5panning Protein. Angewandte Chemie, 2017, 129, 15069-15073.	1.6	11
404	Christopher Dobson, 1949–2019: Mentor, Friend, Scientist Extraordinaire. Annual Review of Biochemistry, 2020, 89, 1-19.	5.0	11
405	Toxin import through the antibiotic efflux channel TolC. Nature Communications, 2021, 12, 4625.	5.8	11
406	Anionic Dendritic Polyglycerol for Protein Purification and Delipidation. ACS Applied Polymer Materials, 2021, 3, 5903-5911.	2.0	11
407	Understanding glycoprotein structural heterogeneity and interactions: Insights from native mass spectrometry. Current Opinion in Structural Biology, 2022, 74, 102351.	2.6	11
408	Host–guest interactions in acid–porphyrin complexes. Chemical Communications, 2012, 48, 9358.	2.2	10
409	Allosteric Inhibition of the SARS oVâ€2 Main Protease: Insights from Mass Spectrometry Based Assays**. Angewandte Chemie, 2020, 132, 23750-23754.	1.6	10
410	AUâ€rich RNAâ€binding induces changes in the quaternary structure of AUH. Proteins: Structure, Function and Bioinformatics, 2009, 75, 360-372.	1.5	9
411	Engineered anti-inflammatory peptides inspired by mapping an evasin–chemokine interaction. Journal of Biological Chemistry, 2020, 295, 10926-10939.	1.6	9
412	NaViA: a program for the visual analysis of complex mass spectra. Bioinformatics, 2021, 37, 4876-4878.	1.8	9
413	lon currents through Kir potassium channels are gated by anionic lipids. Nature Communications, 2022, 13, 490.	5.8	9
414	Non-ionic hybrid detergents for protein delipidation. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183958.	1.4	9

#	Article	IF	CITATIONS
415	Response to Comment on "Protein assemblies ejected directly from native membranes yield complexes for mass spectrometryâ€ŧ Science, 2019, 366, .	6.0	8
416	Competitive binding of MatP and topoisomerase IV to the MukB hinge domain. ELife, 2021, 10, .	2.8	8
417	Dissection of multi-protein complexes using mass spectrometry: Subunit interactions in transthyretin and retinol-binding protein complexes. Proteins: Structure, Function and Bioinformatics, 1998, 33, 3-11.	1.5	8
418	The joining of the Hsp90 and Hsp70 chaperone cycles yields transient interactions and stable intermediates: insights from mass spectrometry. Oncotarget, 2015, 6, 18276-18281.	0.8	8
419	Cryoâ€EM structures of pentameric autoinducerâ€2 exporter from <i>Escherichia coli</i> reveal its transport mechanism. EMBO Journal, 2022, 41, .	3.5	8
420	Colicin-Mediated Transport of DNA through the Iron Transporter FepA. MBio, 2021, 12, e0178721.	1.8	7
421	Crystal Structure of the Human Short Coiled Coil Protein and Insights into SCOC-FEZ1 Complex Formation. PLoS ONE, 2013, 8, e76355.	1.1	7
422	Catenane versus ring: do both assemblies of CS2 hydrolase exhibit the same stability and catalytic activity?. Chemical Science, 2014, 5, 2879.	3.7	6
423	Connecting â€~multi-omics' approaches to endogenous protein complexes. Trends in Chemistry, 2021, 3, 445-455.	4.4	6
424	Mass spectrometry enables the discovery of inhibitors of an LPS transport assembly <i>via</i> disruption of protein–protein interactions. Chemical Communications, 2021, 57, 10747-10750.	2.2	6
425	Drugâ€dependent inhibition of nucleotide hydrolysis in the heterodimeric ABC multidrug transporter PatAB from <i>Streptococcus pneumoniae</i> . FEBS Journal, 2022, 289, 3770-3788.	2.2	6
426	Studies on enmetazobactam clarify mechanisms of widely used β-lactamase inhibitors. Proceedings of the United States of America, 2022, 119, e2117310119.	3.3	6
427	Me, My Cell, and I: The Role of the Collision Cell in the Tandem Mass Spectrometry of Macromolecules. BioTechniques, 2005, 39, 447-453.	0.8	5
428	Mass Spectrometry Characterization of Multiprotein Complexes: Figure 1 Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5180.	0.2	5
429	Probing the Lipid Annular Belt by Gasâ€₽hase Dissociation of Membrane Proteins in Nanodiscs. Angewandte Chemie, 2016, 128, 560-564.	1.6	5
430	Reconstitution of the spliceosomal U1 snRNP from all recombinant subunits and its characterisation by ionspray Q-tof mass-spectrometry. Nucleic Acids Symposium Series, 2001, 1, 275-276.	0.3	4
431	Watching and weightingâ \in "chaperone complexes in action. Nature Methods, 2005, 2, 331-332.	9.0	4
432	Dual stoichiometry and subunit organization in the ClpP1/P2 protease from the cyanobacterium Synechococcus elongatus. Journal of Structural Biology, 2015, 192, 519-527.	1.3	4

#	Article	IF	CITATIONS
433	Maturation of 6S regulatory <scp>RNA</scp> to a highly elongated structure. FEBS Journal, 2015, 282, 4548-4564.	2.2	4
434	In vivo formation of Plasmodium falciparum ribosomal stalk — A unique mode of assembly without stable heterodimeric intermediates. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 150-158.	1.1	4
435	Cracking Complexes To Build Models of Protein Assemblies. ACS Central Science, 2019, 5, 1310-1311.	5.3	4
436	Electrospray ionization of native membrane proteins proceeds <i>via</i> a charge equilibration step. RSC Advances, 2022, 12, 9671-9680.	1.7	4
437	Introduction: Mass Spectrometry Applications in Structural Biology. Chemical Reviews, 2022, 122, 7267-7268.	23.0	4
438	John Fenn (1917–2010). Nature, 2011, 469, 300-300.	13.7	3
439	Peeling back the layers of complexity. Current Opinion in Structural Biology, 2011, 21, 619-621.	2.6	3
440	Precursor–Receptor Interactions in the Twin Arginine Protein Transport Pathway Probed with a New Receptor Complex Preparation. Biochemistry, 2018, 57, 1663-1671.	1.2	3
441	Correlating Glycoforms of DCâ€SIGN with Stability Using a Combination of Enzymatic Digestion and Ion Mobility Mass Spectrometry. Angewandte Chemie, 2020, 132, 15690-15694.	1.6	3
442	The structure of nontypeable Haemophilus influenzae SapA in a closed conformation reveals a constricted ligand-binding cavity and a novel RNA binding motif. PLoS ONE, 2021, 16, e0256070.	1.1	3
443	Finding the right balance – a personal journey from individual proteins to membraneâ€embedded motors. FEBS Journal, 2012, 279, 663-677.	2.2	2
444	Bifunctional crosslinking ligands for transthyretin. Open Biology, 2015, 5, 150105.	1.5	2
445	A Massâ€&pectrometryâ€Based Approach to Distinguish Annular and Specific Lipid Binding to Membrane Proteins. Angewandte Chemie, 2020, 132, 3551-3556.	1.6	2
446	Cryo-EM structure of human GPR158 receptor coupled to the RGS7-Gβ5 signaling complex. Science, 2021, , eabl4732.	6.0	2
447	A single-domain antibody fragment that stabilises the native state of two amyloidogenic lysozyme variants and hence prevents aggregation. Biochemical Society Transactions, 2002, 30, A68-A68.	1.6	0
448	A single-domain antibody fragment that stabilises the native state of two amyloidogenic lysozyme variants and hence prevents aggregation. Biochemical Society Transactions, 2002, 30, A93-A93.	1.6	0
449	Characterization of Functional Protein Complexes. , 2006, , 157-169.		0
450	Structure of a Blinkin-BUBR1 Complex Reveals an Interaction Crucial for Kinetochore-Mitotic Checkpoint Regulation via an Unanticipated Binding Site. Structure, 2011, 19, 1895.	1.6	0

#	Article	IF	CITATIONS
451	Editorial overview: Biophysical methods: behind the scenes of the cryo-EM revolution. Current Opinion in Structural Biology, 2017, 46, ix-xi.	2.6	Ο
452	Innenrücktitelbild: Native Desorption Electrospray Ionization Liberates Soluble and Membrane Protein Complexes from Surfaces (Angew. Chem. 46/2017). Angewandte Chemie, 2017, 129, 14965-14965.	1.6	0
453	Capturing Biology in Flight. Journal of the American Society for Mass Spectrometry, 2019, 30, 4-6.	1.2	Ο
454	Homage to Chris Dobson. Frontiers in Molecular Biosciences, 2019, 6, 137.	1.6	0