Jane P Messina

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1355052/jane-p-messina-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

37 papers	12,270 citations	26 h-index	43 g-index
43 ext. papers	15,167 ext. citations	11.7 avg, IF	5.7 L-index

#	Paper	IF	Citations
37	Mapping environmental suitability of Haemagogus and Sabethes spp. mosquitoes to understand sylvatic transmission risk of yellow fever virus in Brazil <i>PLoS Neglected Tropical Diseases</i> , 2022 , 16, e00	1 0 0819	O
36	Higher risk of death from COVID-19 in low-income and non-White populations of SB Paulo, Brazil. <i>BMJ Global Health</i> , 2021 , 6,	6.6	15
35	Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2. <i>Wellcome Open Research</i> , 2021 , 6, 121	4.8	46
34	Global patterns of aegyptism without arbovirus. <i>PLoS Neglected Tropical Diseases</i> , 2021 , 15, e0009397	4.8	2
33	A review of models applied to the geographic spread of Zika virus. <i>Transactions of the Royal Society of Tropical Medicine and Hygiene</i> , 2021 , 115, 956-964	2	Ο
32	Impact of the COVID-19 pandemic on people with epilepsy: Findings from the Brazilian arm of the COV-E study. <i>Epilepsy and Behavior</i> , 2021 , 123, 108261	3.2	2
31	Epidemiological and clinical characteristics of the COVID-19 epidemic in Brazil. <i>Nature Human Behaviour</i> , 2020 , 4, 856-865	12.8	151
30	The current and future global distribution and population at risk of dengue. <i>Nature Microbiology</i> , 2019 , 4, 1508-1515	26.6	275
29	Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. <i>Nature Microbiology</i> , 2019 , 4, 854-863	26.6	319
28	Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis. <i>Lancet, The</i> , 2017 , 390, 2662-2672	40	51
27	Predicted global distribution of and burden of melioidosis. <i>Nature Microbiology</i> , 2016 , 1,	26.6	463
26	Zika virus in the Americas: Early epidemiological and genetic findings. <i>Science</i> , 2016 , 352, 345-349	33.3	703
25	Mapping global environmental suitability for Zika virus. <i>ELife</i> , 2016 , 5,	8.9	231
24	Hepatitis C seroprevalence and HIV co-infection in sub-Saharan Africa: a systematic review and meta-analysis. <i>Lancet Infectious Diseases, The</i> , 2015 , 15, 819-24	25.5	84
23	The many projected futures of dengue. <i>Nature Reviews Microbiology</i> , 2015 , 13, 230-9	22.2	102
22	The global distribution of Crimean-Congo hemorrhagic fever. <i>Transactions of the Royal Society of Tropical Medicine and Hygiene</i> , 2015 , 109, 503-13	2	126
21	Global distribution and prevalence of hepatitis C virus genotypes. <i>Hepatology</i> , 2015 , 61, 77-87	11.2	1062

(2011-2015)

20	The global compendium of Aedes aegypti and Ae. albopictus occurrence. <i>Scientific Data</i> , 2015 , 2, 15003	358.2	195
19	A global compendium of human Crimean-Congo haemorrhagic fever virus occurrence. <i>Scientific Data</i> , 2015 , 2, 150016	8.2	24
18	The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. <i>ELife</i> , 2015 , 4, e0834	78.9	995
17	Mapping the zoonotic niche of Lassa fever in Africa. <i>Transactions of the Royal Society of Tropical Medicine and Hygiene</i> , 2015 , 109, 483-92	2	72
16	Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. <i>Parasites and Vectors</i> , 2014 , 7, 338	4	212
15	Global spread of dengue virus types: mapping the 70 year history. <i>Trends in Microbiology</i> , 2014 , 22, 138	-4162.4	368
14	Global database of leishmaniasis occurrence locations, 1960-2012. Scientific Data, 2014, 1, 140036	8.2	34
13	A global compendium of human dengue virus occurrence. Scientific Data, 2014 , 1, 140004	8.2	66
12	Global distribution maps of the leishmaniases. <i>ELife</i> , 2014 , 3,	8.9	151
11	Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia. <i>Nature Communications</i> , 2014 , 5, 4116	17.4	124
10	Dengue expansion in Africa-not recognized or not happening?. <i>Emerging Infectious Diseases</i> , 2014 , 20,	10.2	62
9	Spatial and social factors drive anemia in Congolese women. <i>Health and Place</i> , 2013 , 24, 54-64	4.6	9
8	The global distribution and burden of dengue. <i>Nature</i> , 2013 , 496, 504-7	50.4	5261
7	Refining the global spatial limits of dengue virus transmission by evidence-based consensus. <i>PLoS Neglected Tropical Diseases</i> , 2012 , 6, e1760	4.8	913
6	Multilevel and spatial analysis of syphilis in Shenzhen, China, to inform spatially targeted control measures. <i>Sexually Transmitted Infections</i> , 2012 , 88, 325-9	2.8	15
5	A spatial analysis of county-level variation in syphilis and gonorrhea in Guangdong Province, China. <i>PLoS ONE</i> , 2011 , 6, e19648	3.7	15
4	Quantification of the burden and consequences of pregnancy-associated malaria in the Democratic Republic of the Congo. <i>Journal of Infectious Diseases</i> , 2011 , 204, 1762-71	7	22
3	Prevalence of human African trypanosomiasis in the Democratic Republic of the Congo. <i>PLoS Neglected Tropical Diseases</i> , 2011 , 5, e1246	4.8	31

Molecular malaria epidemiology: mapping and burden estimates for the Democratic Republic of the Congo, 2007. *PLoS ONE*, **2011**, 6, e16420 2 3.7

56

Social and racial inequalities in COVID-19 risk of hospitalisation and death across SB Paulo state, Brazil