## Jane P Messina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1355052/publications.pdf Version: 2024-02-01



IANE D MESSINA

| #  | Article                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The global distribution and burden of dengue. Nature, 2013, 496, 504-507.                                                                                         | 13.7 | 7,138     |
| 2  | The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. ELife, 2015, 4, e08347.                                                        | 2.8  | 1,428     |
| 3  | Global distribution and prevalence of hepatitis C virus genotypes. Hepatology, 2015, 61, 77-87.                                                                   | 3.6  | 1,293     |
| 4  | Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS<br>Neglected Tropical Diseases, 2012, 6, e1760.                 | 1.3  | 1,276     |
| 5  | Zika virus in the Americas: Early epidemiological and genetic findings. Science, 2016, 352, 345-349.                                                              | 6.0  | 877       |
| 6  | Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nature<br>Microbiology, 2016, 1, .                                          | 5.9  | 704       |
| 7  | Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature<br>Microbiology, 2019, 4, 854-863.                                     | 5.9  | 699       |
| 8  | The current and future global distribution and population at risk of dengue. Nature Microbiology, 2019, 4, 1508-1515.                                             | 5.9  | 645       |
| 9  | Global spread of dengue virus types: mapping the 70 year history. Trends in Microbiology, 2014, 22,<br>138-146.                                                   | 3.5  | 494       |
| 10 | Mapping global environmental suitability for Zika virus. ELife, 2016, 5, .                                                                                        | 2.8  | 299       |
| 11 | Epidemiological and clinical characteristics of the COVID-19 epidemic in Brazil. Nature Human<br>Behaviour, 2020, 4, 856-865.                                     | 6.2  | 281       |
| 12 | Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites and Vectors, 2014, 7, 338. | 1.0  | 280       |
| 13 | The global compendium of Aedes aegypti and Ae. albopictus occurrence. Scientific Data, 2015, 2, 150035.                                                           | 2.4  | 271       |
| 14 | Global distribution maps of the leishmaniases. ELife, 2014, 3, .                                                                                                  | 2.8  | 203       |
| 15 | The global distribution of Crimean-Congo hemorrhagic fever. Transactions of the Royal Society of<br>Tropical Medicine and Hygiene, 2015, 109, 503-513.            | 0.7  | 193       |
| 16 | Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia. Nature<br>Communications, 2014, 5, 4116.                             | 5.8  | 145       |
| 17 | The many projected futures of dengue. Nature Reviews Microbiology, 2015, 13, 230-239.                                                                             | 13.6 | 145       |
| 18 | Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2. Wellcome Open Research, 2021, 6, 121.                                       | 0.9  | 115       |

JANE P MESSINA

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Mapping the zoonotic niche of Lassa fever in Africa. Transactions of the Royal Society of Tropical<br>Medicine and Hygiene, 2015, 109, 483-492.                                                              | 0.7 | 111       |
| 20 | Hepatitis C seroprevalence and HIV co-infection in sub-Saharan Africa: a systematic review and meta-analysis. Lancet Infectious Diseases, The, 2015, 15, 819-824.                                            | 4.6 | 107       |
| 21 | A global compendium of human dengue virus occurrence. Scientific Data, 2014, 1, 140004.                                                                                                                      | 2.4 | 100       |
| 22 | Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage<br>analysis. Lancet, The, 2017, 390, 2662-2672.                                                            | 6.3 | 80        |
| 23 | Dengue Expansion in Africa—Not Recognized or Not Happening?. Emerging Infectious Diseases, 2014, 20,                                                                                                         | 2.0 | 72        |
| 24 | Molecular Malaria Epidemiology: Mapping and Burden Estimates for the Democratic Republic of the Congo, 2007. PLoS ONE, 2011, 6, e16420.                                                                      | 1.1 | 68        |
| 25 | Higher risk of death from COVID-19 in low-income and non-White populations of São Paulo, Brazil. BMJ<br>Global Health, 2021, 6, e004959.                                                                     | 2.0 | 55        |
| 26 | Prevalence of Human African Trypanosomiasis in the Democratic Republic of the Congo. PLoS<br>Neglected Tropical Diseases, 2011, 5, e1246.                                                                    | 1.3 | 44        |
| 27 | Global database of leishmaniasis occurrence locations, 1960–2012. Scientific Data, 2014, 1, 140036.                                                                                                          | 2.4 | 43        |
| 28 | A global compendium of human Crimean-Congo haemorrhagic fever virus occurrence. Scientific Data,<br>2015, 2, 150016.                                                                                         | 2.4 | 36        |
| 29 | Quantification of the Burden and Consequences of Pregnancy-Associated Malaria in the Democratic Republic of the Congo. Journal of Infectious Diseases, 2011, 204, 1762-1771.                                 | 1.9 | 24        |
| 30 | Multilevel and spatial analysis of syphilis in Shenzhen, China, to inform spatially targeted control measures. Sexually Transmitted Infections, 2012, 88, 325-329.                                           | 0.8 | 21        |
| 31 | Mapping environmental suitability of Haemagogus and Sabethes spp. mosquitoes to understand sylvatic transmission risk of yellow fever virus in Brazil. PLoS Neglected Tropical Diseases, 2022, 16, e0010019. | 1.3 | 19        |
| 32 | A Spatial Analysis of County-level Variation in Syphilis and Gonorrhea in Guangdong Province, China.<br>PLoS ONE, 2011, 6, e19648.                                                                           | 1.1 | 17        |
| 33 | Global patterns of aegyptism without arbovirus. PLoS Neglected Tropical Diseases, 2021, 15, e0009397.                                                                                                        | 1.3 | 14        |
| 34 | Spatial and social factors drive anemia in Congolese women. Health and Place, 2013, 24, 54-64.                                                                                                               | 1.5 | 10        |
| 35 | Impact of the COVID-19 pandemic on people with epilepsy: Findings from the Brazilian arm of the COV-E study. Epilepsy and Behavior, 2021, 123, 108261.                                                       | 0.9 | 8         |
| 36 | A review of models applied to the geographic spread of Zika virus. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 956-964.                                                   | 0.7 | 4         |