Marilo Gurruchaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/135479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioactive zinc-doped sol-gel coating modulates protein adsorption patterns and in vitro cell responses. Materials Science and Engineering C, 2021, 121, 111839.	7.3	19
2	Influence of calcium ion-modified implant surfaces in protein adsorption and implant integration. International Journal of Implant Dentistry, 2021, 7, 32.	2.7	16
3	Protein adsorption/desorption dynamics on Ca-enriched titanium surfaces: biological implications. Journal of Biological Inorganic Chemistry, 2021, 26, 715-726.	2.6	13
4	A single coating with antibacterial properties for prevention of medical device-associated infections. European Polymer Journal, 2019, 113, 289-296.	5.4	9
5	Complement proteins regulating macrophage polarisation on biomaterials. Colloids and Surfaces B: Biointerfaces, 2019, 181, 125-133.	5.0	20
6	The effect of strontium incorporation into sol-gel biomaterials on their protein adsorption and cell interactions. Colloids and Surfaces B: Biointerfaces, 2019, 174, 9-16.	5.0	24
7	Synthesis and characterization of silica-chitosan hybrid materials as antibacterial coatings for titanium implants. Carbohydrate Polymers, 2019, 203, 331-341.	10.2	54
8	Osseointegration mechanisms: a proteomic approach. Journal of Biological Inorganic Chemistry, 2018, 23, 459-470.	2.6	22
9	Preparation and characterization of injectable PMMAâ€strontiumâ€substituted bioactive glass bone cement composites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1245-1257.	3.4	20
10	Enhancement of plasma protein adsorption and osteogenesis of hMSCs by functionalized siloxane coatings for titanium implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1138-1147.	3.4	17
11	Bioactive potential of silica coatings and its effect on the adhesion of proteins to titanium implants. Colloids and Surfaces B: Biointerfaces, 2018, 162, 316-325.	5.0	25
12	Design of nanostructured siloxane-gelatin coatings: Immobilization strategies and dissolution properties. Journal of Non-Crystalline Solids, 2018, 481, 368-374.	3.1	5
13	Characterization of serum proteins attached to distinct sol–gel hybrid surfaces. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1477-1485.	3.4	14
14	Silica-gelatin hybrid sol-gel coatings: A proteomic study with biocompatibility implications. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1769-1779.	2.7	5
15	Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. Biofouling, 2017, 33, 98-111.	2.2	45
16	Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants <i>in vivo</i> . Biofouling, 2017, 33, 676-689.	2.2	36
17	Control of the degradation of silica sol-gel hybrid coatings for metal implants prepared by the triple combination of alkoxysilanes. Journal of Non-Crystalline Solids, 2016, 453, 66-73.	3.1	31
18	Development of hybrid sol–gel coatings for the improvement of metallic biomaterials performance. Progress in Organic Coatings, 2016, 96, 42-51.	3.9	22

MARILO GURRUCHAGA

#	Article	IF	CITATIONS
19	Biological characterization of a new silicon based coating developed for dental implants. Journal of Materials Science: Materials in Medicine, 2016, 27, 80.	3.6	27
20	Study of the degradation of hybrid sol–gel coatings in aqueous medium. Progress in Organic Coatings, 2014, 77, 1799-1806.	3.9	53
21	Scaffolds based on hydroxypropyl starch: Processing, morphology, characterization, and biological behavior. Journal of Applied Polymer Science, 2013, 127, 1475-1484.	2.6	18
22	Synthesis of hybrid sol–gel materials and their biological evaluation with human mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 2013, 24, 1491-1499.	3.6	6
23	The design and characterisation of sol–gel coatings for the controlled-release of active molecules. Journal of Sol-Gel Science and Technology, 2012, 64, 442-451.	2.4	10
24	Drug release from microstructured grafted starch monolithic tablets. Starch/Staerke, 2011, 63, 808-819.	2.1	10
25	Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Bioactivity and biocompatibility. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 103-114.	3.4	22
26	Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Formulation and rheological behaviour. Journal of Materials Science: Materials in Medicine, 2009, 20, 89-97.	3.6	39
27	Physical blends of starch graft copolymers as matrices for colon targeting drug delivery systems. Carbohydrate Polymers, 2009, 76, 593-601.	10.2	37
28	New injectable and radiopaque antibiotic loaded acrylic bone cements. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 312-320.	3.4	30
29	Synthesis and rheological characterization of graft copolymers of butyl and hydroxyethyl methacrylates on starches. Journal of Applied Polymer Science, 2008, 108, 4029-4037.	2.6	1
30	Hydrophilic amylose-based graft copolymers for controlled protein release. Carbohydrate Polymers, 2008, 74, 31-40.	10.2	20
31	The Influence of Crosslinking Amyloseâ€Methacrylic Acid Graft Copolymers on the Release of BSA. Macromolecular Symposia, 2007, 253, 82-87.	0.7	2
32	Acrylic bone cements with bismuth salicylate: Behavior in simulated physiological conditions. Journal of Biomedical Materials Research - Part A, 2007, 80A, 321-332.	4.0	11
33	Enzymatic and anaerobic degradation of amylose based acrylic copolymers, for use as matrices for drug release. Polymer Degradation and Stability, 2007, 92, 658-666.	5.8	16
34	Preparation of acrylic bone cements for vertebroplasty with bismuth salicylate as radiopaque agent. Biomaterials, 2006, 27, 100-107.	11.4	40
35	Influence of powder particle size distribution on complex viscosity and other properties of acrylic bone cement for vertebroplasty and kyphoplasty. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 77B, 98-103.	3.4	29
36	Ethyl methacrylate grafted on two starches as polymeric matrices for drug delivery. Journal of Applied Polymer Science, 2005, 96, 523-536.	2.6	23

MARILO GURRUCHAGA

#	Article	IF	CITATIONS
37	Wear Behaviour of the Pair Ti–6Al–4V–UHMWPE of Acrylic Bone Cements Containing Different Radiopaque Agents. Journal of Biomaterials Applications, 2004, 18, 305-319.	2.4	6
38	Propagation of fatigue cracks in acrylic bone cements containing different radiopaque agents. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2004, 218, 167-172.	1.8	11
39	A radiopaque polymeric matrix for acrylic bone cements. , 2003, 64B, 44-55.		21
40	Elimination of barium sulphate from acrylic bone cements. Use of two iodine-containing monomers. Biomaterials, 2003, 24, 4071-4080.	11.4	45
41	Synthesis of Hydroxypropyl Methacrylate/Polysaccharide Graft Copolymers as Matrices for Controlled Release Tablets. Drug Development and Industrial Pharmacy, 2002, 28, 1101-1115.	2.0	24
42	Synthetic PMMA-Grafted Polysaccharides as Hydrophilic Matrix for Controlled-Release Forms. Drug Development and Industrial Pharmacy, 1999, 25, 1249-1257.	2.0	8
43	Modified acrylic bone cement with high amounts of ethoxytriethyleneglycol methacrylate. Biomaterials, 1999, 20, 453-463.	11.4	35
44	Influence of the modification of P/L ratio on a new formulation of acrylic bone cement. Biomaterials, 1999, 20, 465-474.	11.4	37
45	Characterization of new acrylic bone cement based on methyl methacrylate/1-hydroxypropyl methacrylate monomer. Journal of Biomedical Materials Research Part B, 1999, 48, 447-457.	3.1	20
46	Contribution to the study of new graft copolymer matrices for drug delivery systems. Technological study. International Journal of Pharmaceutics, 1997, 146, 71-79.	5.2	12
47	Drug release from a new family of graft copolymers of methyl methacrylate. I International Journal of Pharmaceutics, 1997, 149, 233-240.	5.2	7
48	pH-Sensitive hydrogels based on non-ionic acrylic copolymers. Biomaterials, 1997, 18, 521-526.	11.4	12
49	The influence of drying method on the physical properties of some graft copolymers for drug delivery systems. Carbohydrate Polymers, 1997, 34, 83-89.	10.2	36
50	Non-ionizable Polyacrylic Hydrogels Sensitive to pH for Biomedical Applications. Polymer International, 1997, 43, 182-186.	3.1	1
51	Application of tertiary amines with reduced toxicity to the curing process of acrylic bone cements. , 1997, 34, 129-136.		55
52	In vitro evaluation of sustained-release matrix tablets prepared with new modified polymeric carbohydrates. International Journal of Pharmaceutics, 1996, 136, 107-115.	5.2	17
53	Hydrogels based on graft copolymerization of 2-hydroxypropyl methacrylate/acrylate mixtures on amylose: swelling behaviour. Polymer, 1996, 37, 1005-1011.	3.8	19
54	New aspects of the effect of size and size distribution on the setting parameters and mechanical properties of acrylic bone cements. Biomaterials, 1996, 17, 509-516.	11.4	108

MARILO GURRUCHAGA

#	Article	IF	CITATIONS
55	Relationship between the morphology of PMMA particles and properties of acrylic bone cements. Journal of Materials Science: Materials in Medicine, 1996, 7, 375-379.	3.6	15
56	Mechanical properties of a modified acrylic bone cement with etoxytriethyleneglycol monomethacrylate. Journal of Materials Science: Materials in Medicine, 1995, 6, 793-798.	3.6	6
57	Hydrogels based on graft copolymerization of HEMA/BMA mixtures onto soluble gelatin: swelling behaviour. Polymer, 1995, 36, 2311-2314.	3.8	35
58	Graft copolymerization of different mixtures of acrylic monomers on amylopectin. Swelling behavior. Journal of Applied Polymer Science, 1994, 54, 577-584.	2.6	12
59	Graft copolymerization of ethyl acrylate with alkyl methacrylates onto amylose initiated by cerium (IV). Microstructure of graft copolymers with respect to statistical copolymers. Polymer, 1994, 35, 1535-1541.	3.8	9
60	Study of the acid hydrolysis of the starch graft copolymers with hydroxylic methacrylates. Journal of Applied Polymer Science, 1993, 47, 1003-1011.	2.6	4
61	Stereoregularity of various polyacrylates obtained from graft copolymers onto starch. Polymer, 1993, 34, 1780-1785.	3.8	12
62	13C n.m.r. study of the graft copolymerization of a mixture of methyl methacrylate with ethyl acrylate on amylose. Polymer, 1993, 34, 512-517.	3.8	14
63	Microstructure of copolymers of methacrylonitrile/n-alkyl methacrylate mixtures grafted onto amylomaize by carbon-13 NMR spectroscopy. Macromolecules, 1993, 26, 4298-4303.	4.8	3
64	Analysis of graft copolymers onto starch by carbon-13 NMR spectroscopy. Macromolecules, 1992, 25, 3009-3014.	4.8	21
65	Synthesis and characterization of graft copolymers of methacrylonitrile/methacrylate mixtures onto amylomaize by the ceric ion method. Journal of Polymer Science Part A, 1992, 30, 1541-1548.	2.3	18
66	Determination of the tacticity of polymethacrylates obtained from graft copolymers. Polymer, 1992, 33, 3089-3094.	3.8	9
67	Synthesis of graft copolymers of hydrophobic and hydrophilic methacrylates onto amylopectin. Polymer, 1992, 33, 3274-3277.	3.8	3
68	Graft copolymerization of hydroxylic methacrylates and ethyl acrylate onto amylopectin. Polymer, 1992, 33, 2860-2862.	3.8	20
69	Synthesis of graft copolymers of acrylic monomers onto amylose. II. Study of the ceric ion behavior. Journal of Applied Polymer Science, 1992, 45, 981-986.	2.6	3
70	Synthesis of graft copolymers of acrylic monomers on amylose: Effect of reaction time. European Polymer Journal, 1992, 28, 975-979.	5.4	15
71	An approach to the knowledge of the graft polymerization of acrylic monomers onto polysaccharides using Ce(IV) as initiator. Journal of Polymer Science, Part C: Polymer Letters, 1989, 27, 149-152.	0.7	15
72	A study of the graft copolymerization of methacrylic acid onto starch using the H2O2/Fe redox system. Journal of Polymer Science Part A, 1989, 27, 595-603.	2.3	15

#	Article	IF	CITATIONS
73	Graft polymerization of acrylic monomers onto starch fractions. IV. Effect of reaction time on the grafting of butyl acrylate onto amylose. Journal of Polymer Science Part A, 1987, 25, 719-725.	2.3	14
74	Study of the ceric ion behavior on the initiation of butyl acrylate polymerization onto amylose. Journal of Polymer Science Part A, 1987, 25, 1309-1314.	2.3	4
75	Graft polymerization of acrylic monomers onto starch fractions. II. Effect of reaction time on grafting of methyl methacrylate onto amylopectin. Journal of Polymer Science, Polymer Letters Edition, 1984, 22, 21-24.	0.4	12
76	Graft polymerization of acrylic monomers onto starch fractions. I. Effect of reaction time on grafting methyl methacrylate onto amylose. Journal of Polymer Science: Polymer Chemistry Edition, 1983, 21, 2573-2580.	0.8	41