
Maria Manuela Rigano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1353965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing the Health-Promoting Effects of Tomato Fruit for Biofortified Food. Mediators of Inflammation, 2014, 2014, 1-16.	1.4	189
2	Antioxidants from Plants Protect against Skin Photoaging. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-11.	1.9	141
3	Vaccine antigen production in transgenic plants: strategies, gene constructs and perspectives. Vaccine, 2003, 21, 803-808.	1.7	117
4	Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice. Vaccine, 2006, 24, 2477-2490.	1.7	101
5	Exploring a Tomato Landraces Collection for Fruit-Related Traits by the Aid of a High-Throughput Genomic Platform. PLoS ONE, 2015, 10, e0137139.	1.1	91
6	Bioactive Compounds in Brassicaceae Vegetables with a Role in the Prevention of Chronic Diseases. Molecules, 2018, 23, 15.	1.7	86
7	An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biology, 2014, 14, 337.	1.6	84
8	Production of a fusion protein consisting of the enterotoxigenic Escherichia coli heat-labile toxin B subunit and a tuberculosis antigen in Arabidopsis thaliana. Plant Cell Reports, 2004, 22, 502-508.	2.8	80
9	Expression of the B subunit of Escherichia coli heat-labile enterotoxin as a fusion protein in transgenic tomato. Plant Cell Reports, 2003, 21, 1020-1026.	2.8	77
10	The Use of a Plant-Based Biostimulant Improves Plant Performances and Fruit Quality in Tomato Plants Grown at Elevated Temperatures. Agronomy, 2020, 10, 363.	1.3	75
11	Antioxidant bioactive compounds in tomato fruits at different ripening stages and their effects on normal and cancer cells. Journal of Functional Foods, 2015, 18, 83-94.	1.6	67
12	Production of foreign proteins using plastid transformation. Biotechnology Advances, 2012, 30, 387-397.	6.0	59
13	Quantitative Trait Loci Pyramiding Can Improve the Nutritional Potential of Tomato (<i>Solanum) Tj ETQq1 1 0.7</i>	′84314 rgE 2.4	3T <u>/</u> Overloc <mark>k</mark>
14	Expression systems and developments in plantâ€made vaccines. Immunology and Cell Biology, 2005, 83, 271-277.	1.0	54
15	Vitamin E Content and Composition in Tomato Fruits: Beneficial Roles and Bio-Fortification. International Journal of Molecular Sciences, 2015, 16, 29250-29264.	1.8	54
16	Identification of candidate genes for phenolics accumulation in tomato fruit. Plant Science, 2013, 205-206, 87-96.	1.7	51
17	Oral immunogenicity of a plant-made, subunit, tuberculosis vaccine. Vaccine, 2006, 24, 691-695.	1.7	50
18	Recombinant plantâ€expressed tumourâ€essociated MUC1 peptide is immunogenic and capable of breaking tolerance in MUC1.Tg mice. Plant Biotechnology Journal, 2011, 9, 991-1001.	4.1	47

2

#	Article	IF	CITATIONS
19	An ascorbic acid-enriched tomato genotype to fight UVA-induced oxidative stress in normal human keratinocytes. Journal of Photochemistry and Photobiology B: Biology, 2016, 163, 284-289.	1.7	46
20	Pectic enzymes as potential enhancers of ascorbic acid production through the D -galacturonate pathway in Solanaceae. Plant Science, 2018, 266, 55-63.	1.7	46
21	Exploiting Genetic and Genomic Resources to Enhance Heat-Tolerance in Tomatoes. Agronomy, 2019, 9, 22.	1.3	45
22	Carotenoids in fresh and processed tomato (<i>Solanum lycopersicum</i>) fruits protect cells from oxidative stress injury. Journal of the Science of Food and Agriculture, 2017, 97, 1616-1623.	1.7	42
23	Identification of non-specific Lipid Transfer Protein gene family members in Solanum lycopersicum and insights into the features of Sola I 3 protein. Scientific Reports, 2019, 9, 1607.	1.6	42
24	Malvidin and cyanidin derivatives from açai fruit (Euterpe oleracea Mart.) counteract UV-A-induced oxidative stress in immortalized fibroblasts. Journal of Photochemistry and Photobiology B: Biology, 2017, 172, 42-51.	1.7	39
25	A Novel Protein Hydrolysate-Based Biostimulant Improves Tomato Performances under Drought Stress. Plants, 2021, 10, 783.	1.6	37
26	Transgenic chloroplasts are efficient sites for highâ€yield production of the vaccinia virus envelope protein A27L in plant cellsâ€. Plant Biotechnology Journal, 2009, 7, 577-591.	4.1	35
27	Selection of tomato landraces with high fruit yield and nutritional quality under elevated temperatures. Journal of the Science of Food and Agriculture, 2020, 100, 2791-2799.	1.7	35
28	Genetic Structure of Pyricularia grisea (Cooke) Sacc. Isolates from Italian Paddy Fields. Journal of Phytopathology, 2005, 153, 80-86.	0.5	34
29	Production of Pharmaceutical Proteins in Solanaceae Food Crops. International Journal of Molecular Sciences, 2013, 14, 2753-2773.	1.8	31
30	Eco-physiological response to water stress of drought-tolerant and drought-sensitive tomato genotypes. Plant Biosystems, 2016, 150, 682-691.	0.8	30
31	Targeting of plant-derived vaccine antigens to immunoresponsive mucosal sites. Vaccine, 2003, 21, 809-811.	1.7	29
32	Exploiting Genomics Resources to Identify Candidate Genes Underlying Antioxidants Content in Tomato Fruit. Frontiers in Plant Science, 2016, 7, 397.	1.7	29
33	Plant Dynamic Metabolic Response to Bacteriophage Treatment After Xanthomonas campestris pv. campestris Infection. Frontiers in Microbiology, 2020, 11, 732.	1.5	25
34	A novel synthetic peptide from a tomato defensin exhibits antibacterial activities against <i>Helicobacter pylori</i> . Journal of Peptide Science, 2012, 18, 755-762.	0.8	24
35	Metabolic and Molecular Changes of the Phenylpropanoid Pathway in Tomato (Solanum lycopersicum) Lines Carrying Different Solanum pennellii Wild Chromosomal Regions. Frontiers in Plant Science, 2016, 7, 1484.	1.7	23
36	New insights in the control of antioxidants accumulation in tomato by transcriptomic analyses of genotypes exhibiting contrasting levels of fruit metabolites. BMC Genomics, 2019, 20, 43.	1.2	23

#	Article	IF	CITATIONS
37	Eco-Physiological Screening of Different Tomato Genotypes in Response to High Temperatures: A Combined Field-to-Laboratory Approach. Plants, 2020, 9, 508.	1.6	23
38	Development of plant-based mucosal vaccines against widespread infectious diseases. Expert Review of Vaccines, 2010, 9, 937-946.	2.0	21
39	Specialized Metabolites and Valuable Molecules in Crop and Medicinal Plants: The Evolution of Their Use and Strategies for Their Production. Genes, 2021, 12, 936.	1.0	20
40	Phenotyping to dissect the biostimulant action of a protein hydrolysate in tomato plants under combined abiotic stress. Plant Physiology and Biochemistry, 2022, 179, 32-43.	2.8	20
41	Role of Antioxidants in the Protection from Aging-Related Diseases. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-2.	1.9	19
42	Bioactive Compound Content and Cytotoxic Effect on Human Cancer Cells of Fresh and Processed Yellow Tomatoes. Molecules, 2016, 21, 33.	1.7	18
43	Identification of tomato accessions as source of new genes for improving heat tolerance: from controlled experiments to field. BMC Plant Biology, 2021, 21, 345.	1.6	18
44	Plants as biofactories for the production of subunit vaccines against bio-security-related bacteria and virusesâ~†. Vaccine, 2009, 27, 3463-3466.	1.7	17
45	Antimicrobial peptides from plants: stabilization of the <i>γ</i> core of a tomato defensin by intramolecular disulfide bond. Journal of Peptide Science, 2013, 19, 240-245.	0.8	16
46	High-Throughput Genotyping of Resilient Tomato Landraces to Detect Candidate Genes Involved in the Response to High Temperatures. Genes, 2020, 11, 626.	1.0	16
47	Phenotypic and Molecular Selection of a Superior Solanum pennellii Introgression Sub-Line Suitable for Improving Quality Traits of Cultivated Tomatoes. Frontiers in Plant Science, 2019, 10, 190.	1.7	14
48	A basic Helix-Loop-Helix (SlARANCIO), identified from a Solanum pennellii introgression line, affects carotenoid accumulation in tomato fruits. Scientific Reports, 2019, 9, 3699.	1.6	13
49	Triterpenic and phenolic acids production changed in Salvia officinalis via inÂvitro and inÂvivo polyploidization: A consequence of altered genes expression. Phytochemistry, 2021, 189, 112803.	1.4	11
50	Induced polyploidy and broad variation in phytochemical traits and altered gene expression in Salvia multicaulis. Scientia Horticulturae, 2022, 291, 110592.	1.7	11
51	The efficient physiological strategy of a novel tomato genotype to adapt to chronic combined water and heat stress. Plant Biology, 2022, 24, 62-74.	1.8	9
52	Nutritional Controlled Preparation and Administration of Different Tomato Purées Indicate Increase of β-Carotene and Lycopene Isoforms, and of Antioxidant Potential in Human Blood Bioavailability: A Pilot Study. Nutrients, 2021, 13, 1336.	1.7	8
53	Genomic Dissection of a Wild Region in a Superior Solanum pennellii Introgression Sub-Line with High Ascorbic Acid Accumulation in Tomato Fruit. Genes, 2020, 11, 847.	1.0	7
54	Phenolics diversity among wild populations of <i>Salvia multicaulis</i> : as a precious source for antimicrobial and antioxidant applications. Natural Product Research, 2022, 36, 1332-1336.	1.0	7

#	Article	IF	CITATIONS
55	Impact of Wild Loci on the Allergenic Potential of Cultivated Tomato Fruits. PLoS ONE, 2016, 11, e0155803.	1.1	4
56	Accelerating the Development of Heat Tolerant Tomato Hybrids through a Multi-Traits Evaluation of Parental Lines Combining Phenotypic and Genotypic Analysis. Plants, 2021, 10, 2168.	1.6	3
57	A Novel Plant-Based Biostimulant Improves Plant Performances under Drought Stress in Tomato. Biology and Life Sciences Forum, 2021, 4, 52.	0.6	2
58	Not Only Systemin: Prosystemin Harbors Other Active Regions Able to Protect Tomato Plants. Frontiers in Plant Science, 2022, 13, .	1.7	2
59	Marker-assisted pyramiding of quantitative trait loci controlling fruit quality traits in tomato. Acta Horticulturae, 2018, , 71-78.	0.1	Ο
60	Knowledge on the Genomes of Wild Tomato Species is the Key to Unlocking Their Breeding Potential. Compendium of Plant Genomes, 2021, , 155-166.	0.3	0
61	Higher Yield and Fruit Quality of a Solanum pennellii Introgression Line. Biology and Life Sciences Forum, 2021, 3, 31.	0.6	0
62	One Plant-Based Biostimulant Stimulates Good Performances of Tomato Plants Grown in Open Field. Biology and Life Sciences Forum, 2021, 3, .	0.6	0