Arkadiusz Orchel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1353552/publications.pdf

Version: 2024-02-01

759055 794469 26 369 12 19 citations h-index g-index papers 26 26 26 638 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Butyrate-Induced Differentiation of Colon Cancer Cells Is PKC and JNK Dependent. Digestive Diseases and Sciences, 2005, 50, 490-498.	1.1	77
2	Multidrug PLA-PEG filomicelles for concurrent delivery of anticancer drugsâ€"The influence of drug-drug and drug-polymer interactions on drug loading and release properties. International Journal of Pharmaceutics, 2016, 510, 365-374.	2.6	38
3	Scaffolds with shape memory behavior for the treatment of large bone defects. Journal of Biomedical Materials Research - Part A, 2015, 103, 3503-3515.	2.1	34
4	Effect of polymer degradation on prolonged release of paclitaxel from filomicelles of polylactide/poly(ethylene glycol) block copolymers. Materials Science and Engineering C, 2017, 75, 918-925.	3.8	28
5	Self-assembled micelles prepared from bio-based hydroxypropyl methyl cellulose and polylactide amphiphilic block copolymers for anti-tumor drug release. International Journal of Biological Macromolecules, 2020, 154, 39-47.	3.6	25
6	The Influence of Chain Microstructure of Biodegradable Copolyesters Obtained with Low-Toxic Zirconium Initiator to <i>In Vitro</i> Biocompatibility. BioMed Research International, 2013, 2013, 1-12.	0.9	20
7	Biodegradable Electrospun Nonwovens Releasing Propolis as a Promising Dressing Material for Burn Wound Treatment. Pharmaceutics, 2020, 12, 883.	2.0	20
8	Influence of betulin and 28-O-propynoylbetulin on proliferation and apoptosis of human melanoma cells (G-361). Postepy Higieny I Medycyny Doswiadczalnej, 2014, 68, 191-197.	0.1	19
9	Bioresorbable filomicelles for targeted delivery of betulin derivative – In vitro study. International Journal of Pharmaceutics, 2019, 557, 43-52.	2.6	18
10	Bioresorbable hydrogels prepared by photo-initiated crosslinking of diacrylated PTMC-PEG-PTMC triblock copolymers as potential carrier of antitumor drugs. Saudi Pharmaceutical Journal, 2020, 28, 290-299.	1.2	13
11	Evaluation of melanogenesis in A-375 melanoma cells treated with 5,7-dimethoxycoumarin and valproic acid. Cellular and Molecular Biology Letters, 2012, 17, 616-32.	2.7	12
12	Evaluation of Melanogenesis in A-375 Cells in the Presence of DMSO and Analysis of Pyrolytic Profile of Isolated Melanin. Scientific World Journal, The, 2012, 2012, 1-7.	0.8	12
13	Anticancer Activity of the Acetylenic Derivative of Betulin Phosphate Involves Induction of Necrotic-Like Death in Breast Cancer Cells In Vitro. Molecules, 2021, 26, 615.	1.7	10
14	Quantification of p21 gene expression in Caco-2 cells treated with sodium butyrate using real-time reverse transcription-PCR (RT-PCR) assay. Acta Poloniae Pharmaceutica, 2003, 60, 103-5.	0.3	8
15	Designing of Biodegradable and Biocompatible Release and Delivery Systems of Selected Antioxidants Used in Cosmetology. Biomacromolecules, 2015, 16, 3603-3612.	2.6	7
16	Electrochemical and Biological Performance of Biodegradable Polymer Coatings on Ti6Al7Nb Alloy. Materials, 2020, 13, 1758.	1.3	5
17	Bioactive (Co)oligoesters as Potential Delivery Systems of p-Anisic Acid for Cosmetic Purposes. Materials, 2020, 13, 4153.	1.3	4
18	Correlation between the composition of PLA-based folate targeted micelles and release of phosphonate derivative of betulin. Journal of Drug Delivery Science and Technology, 2021, 65, 102717.	1.4	4

#	Article	IF	CITATIONS
19	Influence of sodium butyrate on antioxidative enzymes activity in Caco-2 cell lines. Acta Poloniae Pharmaceutica, 2006, 63, 441-2.	0.3	4
20	The Synthesis and Structural Characterization of Graft Copolymers Composed of \hat{I}^3 -PGA Backbone and Oligoesters Pendant Chains. Journal of the American Society for Mass Spectrometry, 2017, 28, 2223-2234.	1.2	3
21	Synthesis of the Bacteriostatic Poly(I-Lactide) by Using Zinc (II)[(acac)(L)H2O] (L = Aminoacid-Based) Tj ETQq1 16950.	0.784314 1.8	rgBT /Ove <mark>rl</mark> e 3
22	Growth of human fibroblasts in the presence of 6-hydroxyhexanoic acid. Acta Poloniae Pharmaceutica, 2010, 67, 710-2.	0.3	2
23	Influence of 28-O-propynoylbetulin on proliferation and apoptosis of melanotic and amelanotic human melanoma cells. Postepy Higieny I Medycyny Doswiadczalnej, 2016, 70, 1404-1408.	0.1	1
24	The effect of sulphasalazine and its metabolites on the colonic epithelial Caco-2 cells. Acta Poloniae Pharmaceutica, 2003, 60, 106-8.	0.3	1
25	Growth of human chondrocytes on biodegradable synthetic polymers. Acta Poloniae Pharmaceutica, 2006, 63, 455-6.	0.3	1
26	Antiproliferative and proapoptotic activity of ursolic acid in human skin malignant melanoma cells. Postepy Higieny I Medycyny Doswiadczalnej, 2018, 72, 1148-1155.	0.1	0