
Anna R Cappello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1352711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasound-Assisted Extraction, Chemical Characterization, and Impact on Cell Viability of Food Wastes Derived from Southern Italy Autochthonous Citrus Fruits. Antioxidants, 2022, 11, 285.	2.2	6
2	Smart Lipid–Polysaccharide Nanoparticles for Targeted Delivery of Doxorubicin to Breast Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 2386.	1.8	10
3	In vitro anti-proliferative and anti-bacterial properties of new C7 benzoate derivatives of pinocembrin. Natural Product Research, 2021, 35, 1783-1791.	1.0	4
4	A Stereoselective, Multicomponent Catalytic Carbonylative Approach to a New Class of α,β-Unsaturated γ-Lactam Derivatives. Catalysts, 2021, 11, 227.	1.6	13
5	New Insights into the Antioxidant and Anti-Inflammatory Effects of Italian Salvia officinalis Leaf and Flower Extracts in Lipopolysaccharide and Tumor-Mediated Inflammation Models. Antioxidants, 2021, 10, 311.	2.2	21
6	The mitochondrial aspartate/glutamate carrier (AGC or Aralar1) isoforms in D. melanogaster: biochemical characterization, gene structure, and evolutionary analysis. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129854.	1.1	9
7	Anticancer potential of novel α,β-unsaturated γ-lactam derivatives targeting the PI3K/AKT signaling pathway. Biochemical Pharmacology, 2021, 190, 114659.	2.0	8
8	3-Amino-alkylated indoles: unexplored green products acting as anti-inflammatory agents. Future Medicinal Chemistry, 2020, 12, 5-17.	1.1	21
9	Cloning, Purification, and Characterization of the Catalytic C-Terminal Domain of the Human 3-Hydroxy-3-methyl glutaryl-CoA Reductase: An Effective, Fast, and Easy Method for Testing Hypocholesterolemic Compounds. Molecular Biotechnology, 2020, 62, 119-131.	1.3	11
10	Exploration of piperazine-derived thioureas as antibacterial and anti-inflammatory agents. In vitro evaluation against clinical isolates of colistin-resistant Acinetobacter baumannii. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127411.	1.0	10
11	Cholesterol and Mevalonate: Two Metabolites Involved in Breast Cancer Progression and Drug Resistance through the ERRα Pathway. Cells, 2020, 9, 1819.	1.8	34
12	Bortezomib-Loaded Mesoporous Silica Nanoparticles Selectively Alter Metabolism and Induce Death in Multiple Myeloma Cells. Cancers, 2020, 12, 2709.	1.7	15
13	Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. International Journal of Molecular Sciences, 2020, 21, 6052.	1.8	16
14	Chemical Profile, Antioxidant, Anti-Inflammatory, and Anti-Cancer Effects of Italian Salvia rosmarinus Spenn. Methanol Leaves Extracts. Antioxidants, 2020, 9, 826.	2.2	25
15	Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment. International Journal of Molecular Sciences, 2020, 21, 6014.	1.8	43
16	Mantonico and Pecorello Grape Seed Extracts: Chemical Characterization and Evaluation of In Vitro Wound-Healing and Anti-Inflammatory Activities. Pharmaceuticals, 2020, 13, 97.	1.7	15
17	5-(Carbamoylmethylene)-oxazolidin-2-ones as a Promising Class of Heterocycles Inducing Apoptosis Triggered by Increased ROS Levels and Mitochondrial Dysfunction in Breast and Cervical Cancer. Biomedicines, 2020, 8, 35.	1.4	22
18	Extracts of Different Polarity of Daphne laureola L. as Valuable Source of Antioxidant and Neuroprotective Compounds. Medical Sciences Forum, 2020, 2, .	0.5	0

ANNA R CAPPELLO

#	Article	IF	CITATIONS
19	Antioxidant and Anti-Inflammatory Activities of Flavanones from Glycyrrhiza glabra L. (licorice) Leaf Phytocomplexes: Identification of Licoflavanone as a Modulator of NF-kB/MAPK Pathway. Antioxidants, 2019, 8, 186.	2.2	96
20	Thioalbamide, A Thioamidated Peptide from Amycolatopsis alba, Affects Tumor Growth and Stemness by Inducing Metabolic Dysfunction and Oxidative Stress. Cells, 2019, 8, 1408.	1.8	31
21	An ancient remedial repurposing: synthesis of new pinocembrin fatty acid acyl derivatives as potential antimicrobial/anti-inflammatory agents. Natural Product Research, 2019, 33, 162-168.	1.0	32
22	Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, Rho-CDI-signalling and mitochondrial metabolism. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 984-996.	0.5	58
23	The Physiopathological Role of the Exchangers Belonging to the SLC37 Family. Frontiers in Chemistry, 2018, 6, 122.	1.8	29
24	Functional characterization of the partially purified Sac1p independent adenine nucleotide transport system (ANTS) from yeast endoplasmic reticulum. Journal of Biochemistry, 2018, 164, 313-322.	0.9	16
25	GPER, IGFâ€IR, and EGFR transduction signaling are involved in stimulatory effects of zinc in breast cancer cells and cancerâ€associated fibroblasts. Molecular Carcinogenesis, 2017, 56, 580-593.	1.3	43
26	Synthesis and Antibacterial Activity of Polymerizable Acryloyloxyalkyltriethyl Ammonium Salts. ChemPlusChem, 2017, 82, 1235-1244.	1.3	13
27	Quercetin and derivatives: useful tools in inflammation and pain management. Future Medicinal Chemistry, 2017, 9, 79-93.	1.1	141
28	Biopolymeric self-assembled nanoparticles for enhanced antibacterial activity of Ag-based compounds. International Journal of Pharmaceutics, 2017, 517, 395-402.	2.6	10
29	A Genomics-Based Approach Identifies a Thioviridamide-Like Compound with Selective Anticancer Activity. ACS Chemical Biology, 2017, 12, 2815-2822.	1.6	88
30	Synthesis and Antibacterial Activity of Polymerizable Acryloyloxyalkyltriethyl Ammonium Salts. ChemPlusChem, 2017, 82, 1233-1234.	1.3	10
31	The lauric acid-activated signaling prompts apoptosis in cancer cells. Cell Death Discovery, 2017, 3, 17063.	2.0	79
32	Mitoriboscins: Mitochondrial-based therapeutics targeting cancer stem cells (CSCs), bacteria and pathogenic yeast. Oncotarget, 2017, 8, 67457-67472.	0.8	36
33	Mitochondrial "power―drives tamoxifen resistance: NQO1 and GCLC are new therapeutic targets in breast cancer. Oncotarget, 2017, 8, 20309-20327.	0.8	65
34	Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs). Aging, 2016, 8, 1593-1607.	1.4	105
35	Repurposing atovaquone: Targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget, 2016, 7, 34084-34099.	0.8	171
36	New insights about the structural rearrangements required for substrate translocation in the bovine mitochondrial oxoglutarate carrier. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1473-1480.	1.1	18

ANNA R CAPPELLO

#	Article	IF	CITATIONS
37	Recent Advances on the Role of G Protein-Coupled Receptors in Hypoxia-Mediated Signaling. AAPS Journal, 2016, 18, 305-310.	2.2	23
38	Bergamot (Citrus bergamia Risso) Flavonoids and Their Potential Benefits in Human Hyperlipidemia and Atherosclerosis: an Overview. Mini-Reviews in Medicinal Chemistry, 2016, 16, 619-629.	1.1	44
39	Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via "differentiation-based nano-therapy― Oncotarget, 2015, 6, 3553-3562.	0.8	192
40	Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget, 2015, 6, 14777-14795.	0.8	225
41	Copper activates HIF-1α/GPER/VEGF signalling in cancer cells. Oncotarget, 2015, 6, 34158-34177.	0.8	128
42	Doxycycline down-regulates DNA-PK and radiosensitizes tumor initiating cells: Implications for more effective radiation therapy. Oncotarget, 2015, 6, 14005-14025.	0.8	103
43	Sericin/Poly(ethylcyanoacrylate) Nanospheres by Interfacial Polymerization for Enhanced Bioefficacy of Fenofibrate: In Vitro and In Vivo Studies. Biomacromolecules, 2015, 16, 3126-3133.	2.6	28
44	Estrogen related receptor α (ERRα) a promising target for the therapy of adrenocortical carcinoma (ACC). Oncotarget, 2015, 6, 25135-25148.	0.8	39
45	Acetylated Hyaluronic Acid: Enhanced Bioavailability and Biological Studies. BioMed Research International, 2014, 2014, 1-7.	0.9	18
46	Mitochondrial tricarboxylate and dicarboxylate–Tricarboxylate carriers: from animals to plants. IUBMB Life, 2014, 66, 462-471.	1.5	43
47	Enhanced cellular uptake by "pharmaceutically oriented devices―of new simplified analogs of Linezolid with antimicrobial activity. International Journal of Pharmaceutics, 2014, 461, 163-170.	2.6	16
48	Hypocholesterolaemic activity of 3-hydroxy-3-methyl-glutaryl flavanones enriched fraction from bergamot fruit (Citrus bergamia): "ln vivo―studies. Journal of Functional Foods, 2014, 7, 558-568.	1.6	53
49	Mitochondrial glutamate carriers from Drosophila melanogaster: Biochemical, evolutionary and modeling studies. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 1245-1255.	0.5	34
50	Mechanisms of divergent effects of activated peroxisome proliferator-activated receptor-γ on mitochondrial citrate carrier expression in 3T3-L1 fibroblasts and mature adipocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1027-1036.	1.2	18
51	The Mitochondrial Citrate Carrier (CIC) Is Present and Regulates Insulin Secretion by Human Male Gamete. Endocrinology, 2012, 153, 1743-1754.	1.4	36
52	Modulatory role of Peroxisome Proliferatorâ€Activated Receptor γ on Citrate Carrier activity and expression. FASEB Journal, 2012, 26, 1034.9.	0.2	0
53	Interaction of fosfomycin with the Glycerol 3-phosphate Transporter of Escherichia coli. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 1323-1329.	1.1	22
54	Functional and structural role of amino acid residues in the matrix α-helices, termini and cytosolic loops of the bovine mitochondrial oxoglutarate carrier. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 302-310.	0.5	30

ANNA R CAPPELLO

#	Article	IF	CITATIONS
55	Glycerophospholipid Synthesis as a Novel Drug Target Against Cancer. Current Molecular Pharmacology, 2011, 4, 167-175.	0.7	49
56	An effective strategy for cloning the mitochondrial citrate carrier: identification, characterization and tissue distribution in silver eel. Advances in Bioscience and Biotechnology (Print), 2011, 02, 157-162.	0.3	3
57	SLC37A1 Gene expression is up-regulated by epidermal growth factor in breast cancer cells. Breast Cancer Research and Treatment, 2010, 122, 755-764.	1.1	32
58	The biochemical properties of the mitochondrial thiamine pyrophosphate carrier from <i>Drosophilaâ€∫melanogaster</i> . FEBS Journal, 2010, 277, 1172-1181.	2.2	34
59	Abundant expression and purification of biologically active mitochondrial citrate carrier in baculovirus-infected insect cells. Journal of Bioenergetics and Biomembranes, 2009, 41, 289-297.	1.0	17
60	Identification of the Drosophila melanogaster Mitochondrial Citrate Carrier: Bacterial Expression, Reconstitution, Functional Characterization and Developmental Distribution. Journal of Biochemistry, 2008, 144, 389-392.	0.9	34
61	Functional and Structural Role of Amino Acid Residues in the Odd-numbered Transmembrane α-Helices of the Bovine Mitochondrial Oxoglutarate Carrier. Journal of Molecular Biology, 2007, 369, 400-412.	2.0	59
62	Functional and Structural Role of Amino Acid Residues in the Even-numbered Transmembrane α-Helices of the Bovine Mitochondrial Oxoglutarate Carrier. Journal of Molecular Biology, 2006, 363, 51-62.	2.0	54
63	Substrate-induced conformational changes of the mitochondrial oxoglutarate carrier: a spectroscopic and molecular modelling study. Molecular Membrane Biology, 2005, 22, 443-452.	2.0	19
64	The Mitochondrial Oxoglutarate Carrier:Â Structural and Dynamic Properties of Transmembrane Segment IV Studied by Site-Directed Spin Labelingâ€,‡. Biochemistry, 2003, 42, 5493-5499.	1.2	15
65	The Mitochondrial Oxoglutarate Carrier:  Cysteine-Scanning Mutagenesis of Transmembrane Domain IV and Sensitivity of Cys Mutants to Sulfhydryl Reagents. Biochemistry, 2001, 40, 15805-15810.	1.2	39
66	Inactivation of the reconstituted oxoglutarate carrier from bovine heart mitochondria by pyridoxal 5'-phosphate. Journal of Bioenergetics and Biomembranes, 1999, 31, 535-541.	1.0	7