Judit E Puskas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/135234/publications.pdf

Version: 2024-02-01

51	775	14	26
papers	citations	h-index	g-index
53	53	53	854
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	PolyDODT: a macrocyclic elastomer with unusual properties. Polymer Chemistry, 2022, 13, 668-676.	3.9	5
2	Multifunctional PEG Carrier by Chemoenzymatic Synthesis for Drug Delivery Systems: In Memory of Professor Andrzej Dworak. Polymers, 2022, 14, 2900.	4.5	2
3	Liquid chromatography at critical conditions (LCCC): Capabilities and limitations for polymer analysis. Journal of Molecular Liquids, 2021, 322, 114956.	4.9	10
4	Polyisobutylene for the rescue: advanced elastomers for healthcare., 2021,, 237-253.		1
5	Polyisobutyleneâ€"New Opportunities for Medical Applications. Molecules, 2021, 26, 5207.	3.8	5
6	Folate-Targeted Monodisperse PEG-Based Conjugates Made by Chemo-Enzymatic Methods for Cancer Diagnosis and Treatment. International Journal of Molecular Sciences, 2021, 22, 10347.	4.1	4
7	Electrospun fiber mats from poly(alloocimene- <i>b</i> i>bisobutylene- <i>b</i> -alloocimene) thermoplastic elastomer. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 263-267.	3.4	4
8	Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning. Materials Science and Engineering C, 2020, 108, 110505.	7.3	23
9	Investigation of the Cytotoxicity of Electrospun Polysuccinimide-Based Fiber Mats. Polymers, 2020, 12, 2324.	4.5	6
10	Lean on Your Land Grant: One University's Approach to Address the Food Supply Chain Workforce during the COVID-19 Pandemic. Journal of Agromedicine, 2020, 25, 417-422.	1.5	6
11	Screening of Polymer-Based Drug Delivery Vehicles Targeting Folate Receptors in Triple-Negative Breast Cancer. Journal of Vascular and Interventional Radiology, 2020, 31, 1866-1873.e2.	0.5	7
12	PEGylation of Fluorescein by Enzyme atalyzed "Click―Michael Addition. Macromolecular Rapid Communications, 2020, 41, 2000163.	3.9	0
13	Toward the effective synthesis of bivalent Folate-targeted PEGylated cancer diagnostic and therapeutic agents using chemo-enzymatic processes. Journal of Molecular Liquids, 2020, 310, 113218.	4.9	4
14	Plasma treatment as an effective tool for crosslinking of electrospun fibers. Journal of Molecular Liquids, 2020, 303, 112628.	4.9	14
15	Synthesis and Characterization of Plasma Crosslinked Electrospun Fiber Mats from Allyl-Functionalized Polysuccinimide. ACS Symposium Series, 2020, , 119-131.	0.5	O
16	Folic acid conjugated polymeric drug delivery vehicle for targeted cancer detection in hepatocellular carcinoma. Journal of Biomedical Materials Research - Part A, 2019, 107, 2522-2535.	4.0	49
17	Molecular Weight Dependence of the Viscosity of Highly Entangled Polyisobutylene. Macromolecules, 2019, 52, 5177-5182.	4.8	18
18	Biocopolyesters of Poly(butylene succinate) Containing Long-Chain Biobased Glycol Synthesized with Heterogeneous Titanium Dioxide Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 10623-10632.	6.7	23

#	Article	IF	Citations
19	The Effect of Reaction Conditions on the Synthesis of Thermoplastic Elastomers Containing Polyalloocimene, Polyisobutylene and Tapered Blocks. Chinese Journal of Polymer Science (English) Tj ETQq1 10	.78 48 14 r	gB ፤ /Overloc
20	Synthesis of Mono- and Dithiols of Tetraethylene Glycol and Poly(ethylene glycol)s via Enzyme Catalysis. Catalysts, 2019, 9, 228.	3.5	8
21	Kinetic studies of biocatalyzed copolyesters of poly(butylene succinate) (PBS) containing fully bio-based dilinoleic diol. European Polymer Journal, 2019, 116, 515-525.	5.4	14
22	MECHANICAL PERFORMANCE OF NOVEL POLYISOBUTYLENE-BASED ELASTOMERIC POLYURETHANES BEFORE AND AFTER HYDROLYSIS. Rubber Chemistry and Technology, 2019, 92, 481-495.	1.2	3
23	Predicting Average Molecular Weights and Branching Level for Selfâ€Condensing Vinyl Copolymerization in a CSTR. Macromolecular Reaction Engineering, 2018, 12, 1700074.	1.5	9
24	RUBBER CITY GIRL: THE PATH TO THE GOODYEAR MEDAL. Rubber Chemistry and Technology, 2018, 91, 1-26.	1.2	7
25	NATURAL RUBBER BIOSYNTHESIS: STILL A MYSTERY. Rubber Chemistry and Technology, 2018, 91, 683-700.	1.2	4
26	Method for the Synthesis of \hat{I}^3 -PEGylated Folic Acid and Its Fluorescein-Labeled Derivative. Macromolecules, 2018, 51, 9069-9077.	4.8	9
27	Enzymatic Degradation of Poly(butylene succinate) Copolyesters Synthesized with the Use of Candida antarctica Lipase B. Polymers, 2018, 10, 688.	4.5	30
28	Stimuliâ€responsive antifouling polyisobutyleneâ€based biomaterials via modular surface functionalization. Journal of Polymer Science Part A, 2017, 55, 1742-1749.	2.3	5
29	Synthesis of Biodegradable Polyisobutylene Disulfides by Living Reversible Recombination Radical Polymerization (R3P): Macrocycles?. Macromolecules, 2017, 50, 2615-2624.	4.8	12
30	Reaction engineering with enzymes: A relatively uncharted territory. AICHE Journal, 2017, 63, 266-272.	3.6	5
31	Parallel models for arborescent polyisobutylene synthesized in batch reactor. AICHE Journal, 2015, 61, 253-265.	3.6	8
32	Green Polymer Chemistry: Investigating the Mechanism of Radical Ring-Opening Redox Polymerization (R3P) of 3,6-Dioxa-1,8-octanedithiol (DODT). Molecules, 2015, 20, 6504-6519.	3.8	14
33	Green Polymer Chemistry: Enzyme Catalysis for Polymer Functionalization. Molecules, 2015, 20, 9358-9379.	3.8	58
34	Synthesis and characterization of thermoplastic elastomers with polyisobutylene and polyalloocimene blocks. Journal of Polymer Science Part A, 2015, 53, 1567-1574.	2.3	19
35	Biocompatibility evaluation of a thermoplastic rubber for wireless telemetric intracranial pressure sensor coating. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 45, 83-89.	3.1	10
36	Green Polymer Chemistry: Enzyme-Catalyzed Polymer Functionalization. ACS Symposium Series, 2015, , 17-25.	0.5	2

#	Article	IF	CITATIONS
37	UNRAVELING THE MYSTERY OF NATURAL RUBBER BIOSYNTHESIS. PART II: COMPOSITION AND GROWTH OF IN VITRO NATURAL RUBBER USING HIGH-RESOLUTION SIZE EXCLUSION CHROMATOGRAPHY. Rubber Chemistry and Technology, 2014, 87, 451-458.	1.2	4
38	Enzyme-catalyzed quantitative chain-end functionalization of poly(ethylene glycol)s under solventless conditions. RSC Advances, 2014, 4, 1683-1688.	3.6	6
39	Synthesis of functionalized polyisobutylenes using the propylene epoxide/TiCl ₄ initiating system. Polymer Chemistry, 2014, 5, 4710.	3.9	17
40	Green Polymer Chemistry VIII: Synthesis of Haloâ€esterâ€Functionalized Poly(ethylene glycol)s via Enzymatic Catalysis. Macromolecular Rapid Communications, 2013, 34, 1375-1380.	3.9	11
41	The role of electron pair donors in the carbocationic copolymerization of isobutylene with alloocimene. Journal of Polymer Science Part A, 2013, 51, 4717-4721.	2.3	10
42	Controlled/living carbocationic copolymerization of isobutylene with alloocimene. Journal of Polymer Science Part A, 2013, 51, 29-33.	2.3	20
43	Green polymer chemistry: Living oxidative polymerization of dithiols. Pure and Applied Chemistry, 2012, 84, 2121-2133.	1.9	14
44	Green Polymer Chemistry: Living Dithiol Polymerization via Cyclic Intermediates. Biomacromolecules, 2012, 13, 154-164.	5.4	54
45	Analysis of branched polymers by high resolution multidetector size exclusion chromatography: Separation of the effects of branching and molecular weight distribution. Journal of Polymer Science Part A, 2012, 50, 70-79.	2.3	13
46	Visualization of arborescent architecture of polystyrenes prepared by raftâ€based initiatorâ€monomer polymerization using atomic force microscopy. Journal of Polymer Science Part A, 2012, 50, 1238-1247.	2.3	2
47	Bioâ€inspired cationic polymerization of isoprene and analogues: stateâ€ofâ€theâ€art. Polymer International, 2012, 61, 149-156.	3.1	38
48	Breast implants: the good, the bad and the ugly. Can nanotechnology improve implants?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 153-168.	6.1	38
49	Cationation of dimethylallyl alcohols by B(C ₆ F ₅) ₃ as models of the (Re)initiation reaction in the bioâ€inspired cationic polymerization of isoprene. Journal of Polymer Science Part A, 2011, 49, 4948-4954.	2.3	10
50	Comparison of the molecular weight and size measurement of polyisobutylenes by size exclusion chromatography/multi-angle laser light scattering and viscometry. Journal of Polymer Science Part A, 2006, 44, 1777-1783.	2.3	21
51	Polyisobutylene-based biomaterials. Journal of Polymer Science Part A, 2004, 42, 3091-3109.	2.3	107