Joseph A Sorg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1351709/publications.pdf

Version: 2024-02-01

172386 197736 3,482 51 29 49 citations h-index g-index papers 57 57 57 2558 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Regulatory transcription factors of <i>Clostridioides difficile</i> pathogenesis with a focus on toxin regulation. Critical Reviews in Microbiology, 2023, 49, 334-349.	2.7	4
2	Clostridioides difficile spore germination: initiation to DPA release. Current Opinion in Microbiology, 2022, 65, 101-107.	2.3	12
3	Imaging Clostridioides difficile Spore Germination and Germination Proteins. Journal of Bacteriology, 2022, 204, .	1.0	5
4	Gut associated metabolites and their roles in $\langle i \rangle$ Clostridioides difficile $\langle i \rangle$ pathogenesis. Gut Microbes, 2022, 14, .	4.3	14
5	The Selenophosphate Synthetase Gene, <i>selD</i> , Is Important for Clostridioides difficile Physiology. Journal of Bacteriology, 2021, 203, e0000821.	1.0	5
6	Clostridioides difficile SpoVAD and SpoVAE Interact and Are Required for Dipicolinic Acid Uptake into Spores. Journal of Bacteriology, 2021, 203, e0039421.	1.0	9
7	The small acid-soluble proteins of Clostridioides difficile are important for UV resistance and serve as a check point for sporulation. PLoS Pathogens, 2021, 17, e1009516.	2.1	10
8	Bile acid-independent protection against Clostridioides difficile infection. PLoS Pathogens, 2021, 17, e1010015.	2.1	46
9	Protease-stable DARPins as promising oral therapeutics. Protein Engineering, Design and Selection, 2021, 34, .	1.0	1
10	Reuterin disrupts <i>Clostridioides difficile</i> metabolism and pathogenicity through reactive oxygen species generation. Gut Microbes, 2020, 12, 1795388.	4.3	23
11	Factors and Conditions That Impact Electroporation of Clostridioides difficile Strains. MSphere, 2020, 5, .	1.3	7
12	Editorial: Alternative Therapeutic Approaches For Multidrug Resistant Clostridium difficile. Frontiers in Microbiology, 2019, 10, 1216.	1.5	0
13	CRISPR Genome Editing Systems in the Genus $\langle i \rangle$ Clostridium $\langle i \rangle$: a Timely Advancement. Journal of Bacteriology, 2019, 201, .	1.0	29
14	Role of the global regulator Rex in control of NAD ⁺ â€regeneration in <i>Clostridioides (Clostridium) difficile</i> . Molecular Microbiology, 2019, 111, 1671-1688.	1.2	37
15	Terbium chloride influences Clostridium difficile spore germination. Anaerobe, 2019, 58, 80-88.	1.0	13
16	The requirement for co-germinants during Clostridium difficile spore germination is influenced by mutations in yabG and cspA. PLoS Pathogens, 2019, 15, e1007681.	2.1	41
17	Role of Bile in Infectious Disease: the Gall of 7α-Dehydroxylating Gut Bacteria. Cell Chemical Biology, 2019, 26, 1-3.	2.5	36
18	Hierarchical recognition of amino acid co-germinants during Clostridioides difficile spore germination. Anaerobe, 2018, 49, 41-47.	1.0	53

#	Article	IF	CITATIONS
19	Conservation of the "Outside-in―Germination Pathway in Paraclostridium bifermentans. Frontiers in Microbiology, 2018, 9, 2487.	1.5	8
20	Clostridioides difficile Biology: Sporulation, Germination, and Corresponding Therapies for C. difficile Infection. Frontiers in Cellular and Infection Microbiology, 2018, 8, 29.	1.8	102
21	Effect of <i>tcdR</i> Mutation on Sporulation in the Epidemic Clostridium difficile Strain R20291. MSphere, 2017, 2, .	1.3	38
22	A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate. Journal of Biological Chemistry, 2017, 292, 10735-10742.	1.6	38
23	Using CRISPR-Cas9-mediated genome editing to generate C. difficile mutants defective in selenoproteins synthesis. Scientific Reports, 2017, 7, 14672.	1.6	79
24	Dipicolinic Acid Release by Germinating Clostridium difficile Spores Occurs through a Mechanosensing Mechanism. MSphere, 2016, 1 , .	1.3	49
25	Germinants and Their Receptors in Clostridia. Journal of Bacteriology, 2016, 198, 2767-2775.	1.0	60
26	Detecting Cortex Fragments During Bacterial Spore Germination. Journal of Visualized Experiments, 2016, , .	0.2	7
27	Reexamining the Germination Phenotypes of Several Clostridium difficile Strains Suggests Another Role for the CspC Germinant Receptor. Journal of Bacteriology, 2016, 198, 777-786.	1.0	52
28	Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore Germination. PLoS Pathogens, 2015, 11, e1005239.	2.1	66
29	Effects of Surotomycin on Clostridium difficile Viability and Toxin ProductionIn Vitro. Antimicrobial Agents and Chemotherapy, 2015, 59, 4199-4205.	1.4	25
30	Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination. Journal of Bacteriology, 2015, 197, 2276-2283.	1.0	85
31	Microbial Bile Acid Metabolic Clusters: The Bouncers at the Bar. Cell Host and Microbe, 2014, 16, 551-552.	5.1	10
32	Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends in Microbiology, 2014, 22, 406-416.	3.5	346
33	Bile Acid Recognition by the Clostridium difficile Germinant Receptor, CspC, Is Important for Establishing Infection. PLoS Pathogens, 2013, 9, e1003356.	2.1	242
34	Site-Directed Mutations in the Lanthipeptide Mutacin 1140. Applied and Environmental Microbiology, 2013, 79, 4015-4023.	1,4	47
35	Both Fidaxomicin and Vancomycin Inhibit Outgrowth of Clostridium difficile Spores. Antimicrobial Agents and Chemotherapy, 2013, 57, 664-667.	1.4	59
36	Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3531-3536.	3.3	90

#	Article	IF	CITATIONS
37	Muricholic Acids Inhibit Clostridium difficile Spore Germination and Growth. PLoS ONE, 2013, 8, e73653.	1.1	64
38	Virulence Studies of Clostridium difficile. Bio-protocol, 2013, 3, .	0.2	0
39	Genetic Manipulation of <i>Clostridium difficile</i> . Current Protocols in Microbiology, 2011, 20, Unit 9A.2.	6.5	84
40	Metabolism of Bile Salts in Mice Influences Spore Germination in Clostridium difficile. PLoS ONE, 2010, 5, e8740.	1.1	165
41	Inhibiting the Initiation of <i>Clostridium difficile </i> Spore Germination using Analogs of Chenodeoxycholic Acid, a Bile Acid. Journal of Bacteriology, 2010, 192, 4983-4990.	1.0	290
42	Chenodeoxycholate Is an Inhibitor of <i>Clostridium difficile</i> Spore Germination. Journal of Bacteriology, 2009, 191, 1115-1117.	1.0	178
43	Laboratory Maintenance of <i>Clostridium difficile</i> . Current Protocols in Microbiology, 2009, 12, Unit9A.1.	6.5	129
44	<i>Yersinia enterocolitica</i> type III secretion of YopR requires a structure in its mRNA. Molecular Microbiology, 2008, 70, 1210-1222.	1.2	19
45	Bile Salts and Glycine as Cogerminants for <i>Clostridium difficile</i> Spores. Journal of Bacteriology, 2008, 190, 2505-2512.	1.0	612
46	Impassable YscP Substrates and Their Impact on the <i>Yersinia enterocolitica</i> Type III Secretion Pathway. Journal of Bacteriology, 2008, 190, 6204-6216.	1.0	32
47	Secretion signal recognition by YscN, the Yersinia type III secretion ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16490-16495.	3.3	45
48	Substrate recognition of type III secretion machines -testing the RNA signal hypothesis. Cellular Microbiology, 2005, 7, 1217-1225.	1.1	39
49	Rejection of Impassable Substrates by Yersinia Type III Secretion Machines. Journal of Bacteriology, 2005, 187, 7090-7102.	1.0	29
50	The Secretion Signal of YopN, a Regulatory Protein of the Yersinia enterocolitica Type III Secretion Pathway. Journal of Bacteriology, 2004, 186, 6320-6324.	1.0	12
51	Binding of SycH Chaperone to YscM1 and YscM2 Activates Effector yop Expression in Yersinia enterocolitica. Journal of Bacteriology, 2004, 186, 829-841.	1.0	36