
Chiara Giorio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1351439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research, 2015, 22, 5-34.	5.3	1,215
2	Environmental fate and exposure; neonicotinoids and fipronil. Environmental Science and Pollution Research, 2015, 22, 35-67.	5.3	903
3	Translocation of Neonicotinoid Insecticides From Coated Seeds to Seedling Guttation Drops: A Novel Way of Intoxication for Bees. Journal of Economic Entomology, 2009, 102, 1808-1815.	1.8	252
4	Conclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environmental Science and Pollution Research, 2015, 22, 148-154.	5.3	206
5	Assessment of the Environmental Exposure of Honeybees to Particulate Matter Containing Neonicotinoid Insecticides Coming from Corn Coated Seeds. Environmental Science & Technology, 2012, 46, 2592-2599.	10.0	166
6	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environmental Science and Pollution Research, 2021, 28, 11749-11797.	5.3	155
7	Rapid analysis of neonicotinoid insecticides in guttation drops of corn seedlings obtained from coated seeds. Journal of Environmental Monitoring, 2011, 13, 1564.	2.1	99
8	Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols. Scientific Reports, 2016, 6, 35038.	3.3	80
9	Fatal powdering of bees in flight with particulates of neonicotinoids seed coating and humidity implication. Journal of Applied Entomology, 2012, 136, 17-26.	1.8	75
10	Molecular composition of fresh and aged secondary organic aerosol from a mixture of biogenic volatile compounds: a high-resolution mass spectrometry study. Atmospheric Chemistry and Physics, 2015, 15, 5683-5695.	4.9	74
11	Molecular composition of biogenic secondary organic aerosols using ultrahigh-resolution mass spectrometry: comparing laboratory and field studies. Atmospheric Chemistry and Physics, 2014, 14, 2155-2167.	4.9	70
12	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate, and transport. Environmental Science and Pollution Research, 2021, 28, 11716-11748.	5.3	67
13	Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: An ultrahigh resolution mass spectrometry study. Atmospheric Environment, 2014, 89, 525-532.	4.1	64
14	The Aerosols, Radiation and Clouds in Southern Africa Field Campaign in Namibia: Overview, Illustrative Observations, and Way Forward. Bulletin of the American Meteorological Society, 2019, 100, 1277-1298.	3.3	59
15	Aerial powdering of bees inside mobile cages and the extent of neonicotinoid cloud surrounding corn drillers. Journal of Applied Entomology, 2013, 137, 35-44.	1.8	46
16	Size distribution of airborne particles controls outcome of epidemiological studies. Science of the Total Environment, 2010, 409, 289-293.	8.0	41
17	Gaseous products and secondary organic aerosol formation during long term oxidation of isoprene and methacrolein. Atmospheric Chemistry and Physics, 2015, 15, 2953-2968.	4.9	41
18	Local and Regional Components of Aerosol in a Heavily Trafficked Street Canyon in Central London Derived from PMF and Cluster Analysis of Single-Particle ATOFMS Spectra. Environmental Science & Technology, 2015, 49, 3330-3340.	10.0	41

CHIARA GIORIO

#	Article	IF	CITATIONS
19	Dynamic viscosity mapping of the oxidation of squalene aerosol particles. Physical Chemistry Chemical Physics, 2016, 18, 30385-30393.	2.8	37
20	Comparison of three techniques for analysis of data from an Aerosol Time-of-Flight Mass Spectrometer. Atmospheric Environment, 2012, 61, 316-326.	4.1	34
21	Multiphase composition changes and reactive oxygen species formation during limonene oxidation in the new Cambridge Atmospheric Simulation Chamber (CASC). Atmospheric Chemistry and Physics, 2017, 17, 9853-9868.	4.9	34
22	Relating hygroscopicity and optical properties to chemical composition and structure of secondary organic aerosol particles generated from the ozonolysis of α-pinene. Atmospheric Chemistry and Physics, 2015, 15, 3339-3358.	4.9	33
23	Field comparison of a personal cascade impactor sampler, an optical particle counter and CEN-EU standard methods for PM10, PM2.5 and PM1 measurement in urban environment. Journal of Aerosol Science, 2013, 65, 111-120.	3.8	32
24	UHPLC-DAD method for the determination of neonicotinoid insecticides in single bees and its relevance in honeybee colony loss investigations. Analytical and Bioanalytical Chemistry, 2013, 405, 1007-1014.	3.7	30
25	Online Quantification of Criegee Intermediates of α-Pinene Ozonolysis by Stabilization with Spin Traps and Proton-Transfer Reaction Mass Spectrometry Detection. Journal of the American Chemical Society, 2017, 139, 3999-4008.	13.7	29
26	Aging of secondary organic aerosol generated from the ozonolysis of α-pinene: effects of ozone, light and temperature. Atmospheric Chemistry and Physics, 2015, 15, 883-897.	4.9	27
27	Secondary organic aerosol formation from isoprene photooxidation during cloud condensation–evaporation cycles. Atmospheric Chemistry and Physics, 2016, 16, 1747-1760.	4.9	27
28	A new processing scheme for ultra-high resolution direct infusion mass spectrometry data. Atmospheric Environment, 2018, 178, 129-139.	4.1	26
29	Formation of metal-organic ligand complexes affects solubility of metals in airborne particles at an urban site in the Po valley. Chemosphere, 2020, 241, 125025.	8.2	26
30	Prospects for reconstructing paleoenvironmental conditions from organic compounds in polar snow and ice. Quaternary Science Reviews, 2018, 183, 1-22.	3.0	25
31	Sustainability of using vineyard pruning residues as an energy source: Combustion performances and environmental impact. Fuel, 2019, 243, 371-380.	6.4	24
32	Vineyard pruning residues pellets for use in domestic appliances: a quality assessment according to the EN ISO 17225. Journal of Agricultural Engineering, 2017, 48, 99.	1.5	22
33	Direct target and non-target analysis of urban aerosol sample extracts using atmospheric pressure photoionisation high-resolution mass spectrometry. Chemosphere, 2019, 224, 786-795.	8.2	18
34	Direct Surface Analysis Coupled to High-Resolution Mass Spectrometry Reveals Heterogeneous Composition of the Cuticle of <i>Hibiscus trionum</i> Petals. Analytical Chemistry, 2015, 87, 9900-9907.	6.5	17
35	Online molecular characterisation of organic aerosols in an atmospheric chamber using extractive electrospray ionisation mass spectrometry. Atmospheric Chemistry and Physics, 2017, 17, 14485-14500.	4.9	15
36	Cloud Processing of Secondary Organic Aerosol from Isoprene and Methacrolein Photooxidation. Journal of Physical Chemistry A, 2017, 121, 7641-7654.	2.5	14

CHIARA GIORIO

#	Article	IF	CITATIONS
37	Detection and identification of Criegee intermediates from the ozonolysis of biogenic and anthropogenic VOCs: comparison between experimental measurements and theoretical calculations. Faraday Discussions, 2017, 200, 559-578.	3.2	12
38	Ultratrace determination of total and available cyanides in industrial wastewaters through a rapid headspace-based sample preparation and gas chromatography with nitrogen phosphorous detection analysis. Journal of Chromatography A, 2013, 1300, 209-216.	3.7	11
39	A new method to assess the acute toxicity toward honeybees of the abrasion particles generated from seeds coated with insecticides. Environmental Sciences Europe, 2020, 32, .	5.5	11
40	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Environmental Science and Pollution Research, 2021, 28, 11709-11715.	5.3	10
41	Wet deposition in the remote western and central Mediterranean as a source of trace metals to surface seawater. Atmospheric Chemistry and Physics, 2022, 22, 2309-2332.	4.9	10
42	Formation of Metal–Cyanide Complexes in Deliquescent Airborne Particles: A New Possible Sink for HCN in Urban Environments. Environmental Science & Technology, 2017, 51, 14107-14113.	10.0	7
43	Direct Injection Liquid Chromatography High-Resolution Mass Spectrometry for Determination of Primary and Secondary Terrestrial and Marine Biomarkers in Ice Cores. Analytical Chemistry, 2019, 91, 5051-5057.	6.5	6
44	Direct Depolymerization Coupled to Liquid Extraction Surface Analysis-High-Resolution Mass Spectrometry for the Characterization of the Surface of Plant Tissues. Analytical Chemistry, 2019, 91, 8326-8333.	6.5	5
45	A new method for the determination of primary and secondary terrestrial and marine biomarkers in ice cores using liquid chromatography high-resolution mass spectrometry. Talanta, 2019, 194, 233-242.	5.5	5
46	Methiocarb metabolites are systemically distributed throughout corn plants grown from coated seeds. Environmental Chemistry Letters, 2021, 19, 1887-1892.	16.2	5
47	Metal Ion Release from Fine Particulate Matter Sampled in the Po Valley to an Aqueous Solution Mimicking Fog Water: Kinetics and Solubility. Aerosol and Air Quality Research, 2020, 20, 720-729.	2.1	5
48	Butene Emissions From Coastal Ecosystems May Contribute to New Particle Formation. Geophysical Research Letters, 2022, 49, .	4.0	5
49	Compositional Analysis of Adsorbed Organic Aerosol on a Microresonator Mass Sensor. Aerosol Science and Engineering, 2018, 2, 118-129.	1.9	3
50	Emerging investigator series: aqueous-phase processing of atmospheric aerosol influences dissolution kinetics of metal ions in an urban background site in the Po Valley. Environmental Sciences: Processes and Impacts, 2022, 24, 884-897.	3.5	3