Abishek Chandrashekar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1351353/publications.pdf

Version: 2024-02-01

54 papers 9,490 citations

172457
29
h-index

56 g-index

71 all docs

71 docs citations

times ranked

71

14947 citing authors

#	Article	IF	CITATIONS
1	Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature, 2021, 590, 630-634.	27.8	995
2	DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science, 2020, 369, 806-811.	12.6	978
3	Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584, 443-449.	27.8	956
4	SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science, 2020, 369, 812-817.	12.6	789
5	Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature, 2020, 586, 583-588.	27.8	765
6	Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science, 2016, 353, 1129-1132.	12.6	461
7	Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 Omicron. Nature, 2022, 603, 493-496.	27.8	326
8	Immunogenicity of COVID-19 mRNA Vaccines in Pregnant and Lactating Women. JAMA - Journal of the American Medical Association, 2021, 325, 2370.	7.4	307
9	Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. New England Journal of Medicine, 2022, 386, 1579-1580.	27.0	296
10	Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature, 2021, 596, 268-272.	27.8	290
11	Elicitation of Robust Tier 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using Optimized Approaches. Immunity, 2017, 46, 1073-1088.e6.	14.3	286
12	Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13-19). Lancet, The, 2018, 392, 232-243.	13.7	269
13	Immunogenicity of the Ad26.COV2.S Vaccine for COVID-19. JAMA - Journal of the American Medical Association, 2021, 325, 1535.	7.4	260
14	Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature, 2016, 540, 284-287.	27.8	246
15	Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. Nature, 2018, 563, 360-364.	27.8	246
16	Differential Kinetics of Immune Responses Elicited by Covid-19 Vaccines. New England Journal of Medicine, 2021, 385, 2010-2012.	27.0	228
17	Durable Humoral and Cellular Immune Responses 8 Months after Ad26.COV2.S Vaccination. New England Journal of Medicine, 2021, 385, 951-953.	27.0	192
18	Zika Virus Persistence in the Central Nervous System and Lymph Nodes of Rhesus Monkeys. Cell, 2017, 169, 610-620.e14.	28.9	191

#	Article	IF	CITATIONS
19	Vascular Disease and Thrombosis in SARS-CoV-2-Infected Rhesus Macaques. Cell, 2020, 183, 1354-1366.e13.	28.9	184
20	Antibody-mediated protection against SHIV challenge includes systemic clearance of distal virus. Science, 2016, 353, 1045-1049.	12.6	129
21	Durability and correlates of vaccine protection against Zika virus in rhesus monkeys. Science Translational Medicine, 2017, 9, .	12.4	108
22	Profiling SARS-CoV-2 HLA-I peptidome reveals TÂcell epitopes from out-of-frame ORFs. Cell, 2021, 184, 3962-3980.e17.	28.9	98
23	Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature, 2022, 601, 410-414.	27.8	71
24	Vaccine protection against the SARS-CoV-2 Omicron variant in macaques. Cell, 2022, 185, 1549-1555.e11.	28.9	59
25	Characterization of immune responses in fully vaccinated individuals after breakthrough infection with the SARS-CoV-2 delta variant. Science Translational Medicine, 2022, 14, eabn6150.	12.4	57
26	Low-dose Ad26.COV2.S protection against SARS-CoV-2 challenge in rhesus macaques. Cell, 2021, 184, 3467-3473.e11.	28.9	49
27	Virological Control by the CD4-Binding Site Antibody N6 in Simian-Human Immunodeficiency Virus-Infected Rhesus Monkeys. Journal of Virology, 2017, 91, .	3.4	40
28	Protective efficacy of Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques. Nature, 2021, 596, 423-427.	27.8	40
29	Safety, pharmacokinetics and antiviral activity of PGT121, a broadly neutralizing monoclonal antibody against HIV-1: a randomized, placebo-controlled, phase 1 clinical trial. Nature Medicine, 2021, 27, 1718-1724.	30.7	39
30	Safety and immunogenicity of a Zika purified inactivated virus vaccine given via standard, accelerated, or shortened schedules: a single-centre, double-blind, sequential-group, randomised, placebo-controlled, phase 1 trial. Lancet Infectious Diseases, The, 2020, 20, 1061-1070.	9.1	36
31	Lack of therapeutic efficacy of an antibody to \hat{l}_{\pm} ₄ \hat{l}_{\pm} ₇ in SIVmac251-infected rhesus macaques. Science, 2019, 365, 1029-1033.	12.6	31
32	SARS-CoV-2 receptor binding domain displayed on HBsAg virus–like particles elicits protective immunity in macaques. Science Advances, 2022, 8, eabl6015.	10.3	27
33	Persistence of viral RNA in lymph nodes in ART-suppressed SIV/SHIV-infected Rhesus Macaques. Nature Communications, 2021, 12, 1474.	12.8	26
34	Passive Transfer of Vaccine-Elicited Antibodies Protects against SIV in Rhesus Macaques. Cell, 2020, 183, 185-196.e14.	28.9	25
35	SARS-CoV-2 binding and neutralizing antibody levels after Ad26.COV2.S vaccination predict durable protection in rhesus macaques. Nature Communications, 2021, 12, 5877.	12.8	21

Comparison of shortened mosaic HIV-1 vaccine schedules: a randomised, double-blind, placebo-controlled phase 1 trial (IPCAVD010/HPX1002) and a preclinical study in rhesus monkeys (NHP) Tj ETQq0 4.0 rgBT / 10.0 rgBT / 10.0

#	Article	IF	Citations
37	Prior infection with SARS-CoV-2 WA1/2020 partially protects rhesus macaques against reinfection with B.1.1.7 and B.1.351 variants. Science Translational Medicine, 2021, 13, eabj2641.	12.4	15
38	Coronavirus Disease 2019 Messenger RNA Vaccine Immunogenicity in Immunosuppressed Individuals. Journal of Infectious Diseases, 2022, 225, 1124-1128.	4.0	15
39	HIV envelope antibodies and TLR7 agonist partially prevent viral rebound in chronically SHIV-infected monkeys. PLoS Pathogens, 2022, 18, e1010467.	4.7	15
40	Development of novel replication-defective lymphocytic choriomeningitis virus vectors expressing SIV antigens. Vaccine, 2017, 35, 1-9.	3.8	14
41	Long-acting capsid inhibitor protects macaques from repeat SHIV challenges. Nature, 2022, 601, 612-616.	27.8	14
42	A homologous or variant booster vaccine after Ad26.COV2.S immunization enhances SARS-CoV-2–specific immune responses in rhesus macaques. Science Translational Medicine, 2022, 14, eabm4996.	12.4	13
43	Therapeutic efficacy of combined active and passive immunization in ART-suppressed, SHIV-infected rhesus macaques. Nature Communications, 2022, 13, .	12.8	12
44	A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. Med, 2022, 3, 188-203.e4.	4.4	11
45	Origin of rebound virus in chronically SIV-infected Rhesus monkeys following treatment discontinuation. Nature Communications, 2020, 11, 5412.	12.8	9
46	Adenovirus-vectored vaccine containing multidimensionally conserved parts of the HIV proteome is immunogenic in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
47	Sustained maternal antibody and cellular immune responses in pregnant women infected with Zika virus and mother to infant transfer of Zikaâ€specific antibodies. American Journal of Reproductive Immunology, 2020, 84, e13288.	1.2	7
48	Impact of prior Dengue immunity on Zika vaccine protection in rhesus macaques and mice. PLoS Pathogens, 2021, 17, e1009673.	4.7	7
49	Differential Outcomes following Optimization of Simian-Human Immunodeficiency Viruses from Clades AE, B, and C. Journal of Virology, 2020, 94, .	3.4	5
50	Protective Efficacy of Gastrointestinal SARS-CoV-2 Delivery against Intranasal and Intratracheal SARS-CoV-2 Challenge in Rhesus Macaques. Journal of Virology, 2022, 96, JVI0159921.	3.4	5
51	Therapeutic efficacy of an Ad26/MVA vaccine with SIV gp140 protein and vesatolimod in ART-suppressed rhesus macaques. Npj Vaccines, 2022, 7, 53.	6.0	4
52	A bivalent SARS-CoV-2 monoclonal antibody combination does not affect the immunogenicity of a vector-based COVID-19 vaccine in macaques. Science Translational Medicine, 2022, 14, .	12.4	3
53	Ad26.COV2.S boosts antibody and T-cell responses following BNT162b2 vaccination. Emerging Microbes and Infections, 2021, 10, 2220-2222.	6.5	2
54	Passive transfer of Ad26.COV2.S-elicited IgG from humans attenuates SARS-CoV-2 disease in hamsters. Npj Vaccines, 2022, 7, 2.	6.0	2