List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/135132/publications.pdf Version: 2024-02-01

IAMES W/ HODGE

#	Article	IF	CITATIONS
1	Next Generation Therapeutic Strategâ€Es: Evolving cancer immunotherapy through agents that Engage , Expand and Enable the antiâ€ŧumor immune response. Immunomedicine, 2021, 1, e1020.	0.7	6
2	Vaccine Increases the Diversity and Activation of Intratumoral T Cells in the Context of Combination Immunotherapy. Cancers, 2021, 13, 968.	3.7	9
3	Differential combination immunotherapy requirements for inflamed (warm) tumors versus T cell excluded (cool) tumors: engage, expand, enable, and evolve. , 2021, 9, e001691.		34
4	Stay on Target: Reengaging Cancer Vaccines in Combination Immunotherapy. Vaccines, 2021, 9, 509.	4.4	14
5	A phase I/II study of bintrafusp alfa and NHS-IL12 in combination with docetaxel in adults with metastatic castration sensitive (mCSPC) and castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2021, 39, TPS5096-TPS5096.	1.6	3
6	Exploiting off-target effects of estrogen deprivation to sensitize estrogen receptor negative breast cancer to immune killing. , 2021, 9, e002258.		11
7	From Immunogenic Cell Death to Immunogenic Modulation: Select Chemotherapy Regimens Induce a Spectrum of Immune-Enhancing Activities in the Tumor Microenvironment. Frontiers in Oncology, 2021, 11, 728018.	2.8	63
8	Therapy of Established Tumors with Rationally Designed Multiple Agents Targeting Diverse Immune–Tumor Interactions: Engage, Expand, Enable. Cancer Immunology Research, 2021, 9, 239-252.	3.4	11
9	The emerging role of off-the-shelf engineered natural killer cells in targeted cancer immunotherapy. Molecular Therapy - Oncolytics, 2021, 23, 266-276.	4.4	38
10	Combinatorial Natural Killer Cell–based Immunotherapy Approaches Selectively Target Chordoma Cancer Stem Cells. Cancer Research Communications, 2021, 1, 127-139.	1.7	8
11	Cooperative Immune-Mediated Mechanisms of the HDAC Inhibitor Entinostat, an IL15 Superagonist, and a Cancer Vaccine Effectively Synergize as a Novel Cancer Therapy. Clinical Cancer Research, 2020, 26, 704-716.	7.0	26
12	Neoadjuvant PD-1 Immune Checkpoint Blockade Reverses Functional Immunodominance among Tumor Antigen–Specific T Cells. Clinical Cancer Research, 2020, 26, 679-689.	7.0	49
13	Natural Born Killers: NK Cells in Cancer Therapy. Cancers, 2020, 12, 2131.	3.7	44
14	Overcoming hypoxia-induced functional suppression of NK cells. , 2020, 8, e000246.		44
15	Combination of PARP Inhibitor Olaparib, and PD-L1 Inhibitor Durvalumab, in Recurrent Ovarian Cancer: a Proof-of-Concept Phase II Study. Clinical Cancer Research, 2020, 26, 4268-4279.	7.0	126
16	Rationale for IL-15 superagonists in cancer immunotherapy. Expert Opinion on Biological Therapy, 2020, 20, 705-709.	3.1	46
17	Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. , 2020, 8, e000337.		610
18	PD-L1 targeting high-affinity NK (t-haNK) cells induce direct antitumor effects and target suppressive		79

MDSC populations. , 2020, 8, e000450.

#	Article	IF	CITATIONS
19	Tumor control via targeting PD-L1 with chimeric antigen receptor modified NK cells. ELife, 2020, 9, .	6.0	32
20	Cisplatin and oxaliplatin induce similar immunogenic changes in preclinical models of head and neck cancer. Oral Oncology, 2019, 95, 127-135.	1.5	103
21	Efficient ADCC killing of meningioma by avelumab and a high-affinity natural killer cell line, haNK. JCI Insight, 2019, 4, .	5.0	40
22	An IL-15 superagonist/IL-15Rα fusion complex protects and rescues NK cell-cytotoxic function from TGF-β1-mediated immunosuppression. Cancer Immunology, Immunotherapy, 2018, 67, 675-689.	4.2	55
23	A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab. Journal of Neurosurgery, 2018, 128, 1419-1427.	1.6	17
24	PD-1 blockade reverses adaptive immune resistance induced by high-dose hypofractionated but not low-dose daily fractionated radiation. Oncolmmunology, 2018, 7, e1395996.	4.6	90
25	Immunotherapy utilizing the combination of natural killer– and antibody dependent cellular cytotoxicity (ADCC)–mediating agents with poly (ADP-ribose) polymerase (PARP) inhibition. , 2018, 6, 133.		56
26	Epigenetic priming of both tumor and NK cells augments antibody-dependent cellular cytotoxicity elicited by the anti-PD-L1 antibody avelumab against multiple carcinoma cell types. Oncolmmunology, 2018, 7, e1466018.	4.6	51
27	Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies. , 2018, 6, 59.		43
28	Immunotherapy utilizing the combined use of NK and ADCC mediating agents with PARP inhibition Journal of Clinical Oncology, 2018, 36, 5021-5021.	1.6	0
29	ADCC employing an NK cell line (haNK) expressing the high affinity CD16 allele with avelumab, an anti-PD-L1 antibody. International Journal of Cancer, 2017, 141, 583-593.	5.1	37
30	Identification and characterization of enhancer agonist human cytotoxic T-cell epitopes of the human papillomavirus type 16 (HPV16) E6/E7. Vaccine, 2017, 35, 2605-2611.	3.8	17
31	Dose-dependent enhancement of T-lymphocyte priming and CTL lysis following ionizing radiation in an engineered model of oral cancer. Oral Oncology, 2017, 71, 87-94.	1.5	26
32	Combination therapy with an OX40L fusion protein and a vaccine targeting the transcription factor twist inhibits metastasis in a murine model of breast cancer. Oncotarget, 2017, 8, 90825-90841.	1.8	18
33	Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody. Oncotarget, 2017, 8, 8807-8817.	1.8	68
34	Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab. Oncotarget, 2016, 7, 33498-33511.	1.8	85
35	IL-15 superagonist/IL-15RαSushi-Fc fusion complex (IL-15SA/IL-15RαSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget, 2016, 7, 16130-16145.	1.8	138
36	The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigen-specific T cells. Oncotarget, 2016, 7, 37762-37772.	1.8	96

#	Article	IF	CITATIONS
37	An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele. Oncotarget, 2016, 7, 86359-86373.	1.8	143
38	Enhanced Tumor Control with Combination mTOR and PD-L1 Inhibition in Syngeneic Oral Cavity Cancers. Cancer Immunology Research, 2016, 4, 611-620.	3.4	73
39	Tumor Cells Surviving Exposure to Proton or Photon Radiation Share a Common Immunogenic Modulation Signature, Rendering Them More Sensitive to T Cell–Mediated Killing. International Journal of Radiation Oncology Biology Physics, 2016, 95, 120-130.	0.8	117
40	Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach?. Nature Reviews Clinical Oncology, 2016, 13, 516-524.	27.6	288
41	Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas' sensitivity to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation. Oncotarget, 2016, 7, 86937-86947.	1.8	63
42	Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget, 2016, 7, 7390-7402.	1.8	89
43	Androgen deprivation therapy sensitizes triple negative breast cancer cells to immune-mediated lysis through androgen receptor independent modulation of osteoprotegerin. Oncotarget, 2016, 7, 23498-23511.	1.8	25
44	Inhibition of the angiopoietin/Tie2 axis induces immunogenic modulation, which sensitizes human tumor cells to immune attack. , 2015, 3, 52.		22
45	Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 588.	4.8	317
46	Immune Consequences of Tyrosine Kinase Inhibitors that Synergize with Cancer Immunotherapy. Cancer Cell & Microenvironment, 2015, 2, .	0.8	61
47	Improving clinical benefit for prostate cancer patients through the combination of androgen deprivation and immunotherapy. Oncolmmunology, 2015, 4, e1009303.	4.6	5
48	Combination Regimens of Radiation Therapy and Therapeutic Cancer Vaccines: Mechanisms and Opportunities. Seminars in Radiation Oncology, 2015, 25, 46-53.	2.2	30
49	The IDO inhibitor INCB024360 to enhance dendritic cell immunogenicity and anti-tumor immunity in vitro Journal of Clinical Oncology, 2015, 33, e14012-e14012.	1.6	1
50	A poxviral-based cancer vaccine targeting the transcription factor twist inhibits primary tumor growth and metastases in a model of metastatic breast cancer and improves survival in a spontaneous prostate cancer model. Oncotarget, 2015, 6, 28194-28210.	1.8	26
51	ABO blood type correlates with survival on prostate cancer vaccine therapy. Oncotarget, 2015, 6, 32244-32256.	1.8	18
52	The generation and analyses of a novel combination of recombinant adenovirus vaccines targeting three tumor antigens as an immunotherapeutic. Oncotarget, 2015, 6, 31344-31359.	1.8	32
53	Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget, 2014, 5, 403-416.	1.8	331
54	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	4.6	686

#	Article	IF	CITATIONS
55	Radiation-induced survival responses promote immunogenic modulation to enhance immunotherapy in combinatorial regimens. Oncolmmunology, 2014, 3, e28643.	4.6	44
56	Radiation-Induced Modulation of Costimulatory and Coinhibitory T-Cell Signaling Molecules on Human Prostate Carcinoma Cells Promotes Productive Antitumor Immune Interactions. Cancer Biotherapy and Radiopharmaceuticals, 2014, 29, 153-161.	1.0	71
57	Immune Consequences of Decreasing Tumor Vasculature with Antiangiogenic Tyrosine Kinase Inhibitors in Combination with Therapeutic Vaccines. Cancer Immunology Research, 2014, 2, 1090-1102.	3.4	62
58	Dual effects of a targeted small-molecule inhibitor (cabozantinib) on immune-mediated killing of tumor cells and immune tumor microenvironment permissiveness when combined with a cancer vaccine. Journal of Translational Medicine, 2014, 12, 294.	4.4	144
59	Therapeutic Cancer Vaccines. Advances in Cancer Research, 2014, 121, 67-124.	5.0	68
60	A pan inhibitor of DASH family enzymes induces immunogenic modulation and sensitizes murine and human carcinoma cells to antigen-specific cytotoxic T lymphocyte killing: implications for combination therapy with cancer vaccines. Vaccine, 2014, 32, 3223-3231.	3.8	10
61	Humoral response to a viral glycan correlates with survival on PROSTVAC-VF. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1749-58.	7.1	41
62	Unlocking the Combination: Potentiation of Radiation-Induced Antitumor Responses with Immunotherapy. Radiation Research, 2014, 182, 126-138.	1.5	62
63	Immune Impact Induced by PROSTVAC (PSA-TRICOM), a Therapeutic Vaccine for Prostate Cancer. Cancer Immunology Research, 2014, 2, 133-141.	3.4	115
64	Vaccine-Mediated Immunotherapy Directed against a Transcription Factor Driving the Metastatic Process. Cancer Research, 2014, 74, 1945-1957.	0.9	31
65	<i>In Vivo</i> Effects of Lattice Radiation Therapy on Local and Distant Lung Cancer: Potential Role of Immunomodulation. Radiation Research, 2014, 182, 149-162.	1.5	85
66	Abstract 632: Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. , 2014, , .		1
67	Androgen deprivation therapy sensitizes prostate cancer cells to T-cell killing through androgen receptor dependent modulation of the apoptotic pathway. Oncotarget, 2014, 5, 9335-9348.	1.8	64
68	Chemotherapyâ€induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. International Journal of Cancer, 2013, 133, 624-636.	5.1	225
69	Cancer vaccines targeting carcinoembryonic antigen: state-of-the-art and future promise. Expert Review of Vaccines, 2013, 12, 617-629.	4.4	18
70	Recombinant TRICOM-based Therapeutic Cancer Vaccines. , 2013, , 309-331.		1
71	Serum Antibodies to Blood Group A Predict Survival on PROSTVAC-VF. Clinical Cancer Research, 2013, 19, 1290-1299.	7.0	50
72	Combination Therapy with a Second-Generation Androgen Receptor Antagonist and a Metastasis Vaccine Improves Survival in a Spontaneous Prostate Cancer Model. Clinical Cancer Research, 2013, 19, 6205-6218.	7.0	75

#	Article	IF	CITATIONS
73	Prostate-specific antigen bounce predicts for aÂfavorable prognosis following brachytherapy: aÂmeta-analysis. Journal of Contemporary Brachytherapy, 2013, 4, 210-214.	0.9	14
74	Attacking malignant cells that survive therapy. Oncolmmunology, 2013, 2, e26937.	4.6	29
75	Harnessing the Potential of Radiation-Induced Immune Modulation for Cancer Therapy. Cancer Immunology Research, 2013, 1, 280-284.	3.4	55
76	Soluble CD27-Pool in Humans May Contribute to T Cell Activation and Tumor Immunity. Journal of Immunology, 2013, 190, 6250-6258.	0.8	59
77	Combination Therapy with Local Radiofrequency Ablation and Systemic Vaccine Enhances Antitumor Immunity and Mediates Local and Distal Tumor Regression. PLoS ONE, 2013, 8, e70417.	2.5	57
78	A phase II randomized clinical trial of samarium-153 EDTMP (Sm-153) with or without PSA-TRICOM vaccine in metastatic castration-resistant prostate cancer (mCRPC) after docetaxel Journal of Clinical Oncology, 2013, 31, 102-102.	1.6	14
79	Immunological targeting of tumor cells undergoing an epithelial-mesenchymal transition via a recombinant brachyury-yeast vaccine. Oncotarget, 2013, 4, 1777-1790.	1.8	63
80	Abscopal Regression of Antigen Disparate Tumors by Antigen Cascade After Systemic Tumor Vaccination in Combination with Local Tumor Radiation. Cancer Biotherapy and Radiopharmaceuticals, 2012, 27, 12-22.	1.0	101
81	Defining the Molecular Signature of Chemotherapy-Mediated Lung Tumor Phenotype Modulation and Increased Susceptibility to T-Cell Killing. Cancer Biotherapy and Radiopharmaceuticals, 2012, 27, 23-35.	1.0	36
82	In the field: exploiting the untapped potential of immunogenic modulation by radiation in combination with immunotherapy for the treatment of cancer. Frontiers in Oncology, 2012, 2, 104.	2.8	89
83	Combining radiation and therapeutic cancer vaccines: a synergistic approach. Breast Cancer Management, 2012, 1, 325-335.	0.2	0
84	The Tipping Point for Combination Therapy: Cancer Vaccines With Radiation, Chemotherapy, or Targeted Small Molecule Inhibitors. Seminars in Oncology, 2012, 39, 323-339.	2.2	132
85	Consequence of dose scheduling of sunitinib on host immune response elements and vaccine combination therapy. International Journal of Cancer, 2012, 130, 1948-1959.	5.1	115
86	Interim analysis of a phase II randomized clinical trial of samrium-153 (Sm-153) with or without PSA-TRICOM vaccine in metastatic castration-resistant prostate cancer after docetaxel Journal of Clinical Oncology, 2012, 30, 2526-2526.	1.6	11
87	Exploitation of differential homeostatic proliferation of T-cell subsets following chemotherapy to enhance the efficacy of vaccine-mediated antitumor responses. Cancer Immunology, Immunotherapy, 2011, 60, 1227-1242.	4.2	66
88	Design, development, and translation of poxvirus-based vaccines for cancer. , 2011, , 56-77.		1
89	Concurrent vaccination with two distinct vaccine platforms targeting the same antigen generates phenotypically and functionally distinct T-cell populations. Cancer Immunology, Immunotherapy, 2010, 59, 397-408.	4.2	39
90	Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunology, Immunotherapy, 2010, 59, 663-674.	4.2	279

#	Article	IF	CITATIONS
91	Effect of a small molecule BCLâ $\in 2$ inhibitor on immune function and use with a recombinant vaccine. International Journal of Cancer, 2010, 127, 1603-1613.	5.1	41
92	Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Research, 2010, 10, 1060-1069.	2.3	69
93	Enhancing immune responses to tumor-associated antigens. Cancer Biology and Therapy, 2009, 8, 1440-1449.	3.4	56
94	Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opinion on Investigational Drugs, 2009, 18, 1001-1011.	4.1	187
95	Harnessing the unique local immunostimulatory properties of modified vaccinia Ankara (MVA) virus to generate superior tumor-specific immune responses and antitumor activity in a diversified prime and boost vaccine regimen. Vaccine, 2009, 27, 4475-4482.	3.8	28
96	Combining radiation, immunotherapy, and antiangiogenesis agents in the management of cancer: the Three Musketeers or just another quixotic combination?. Molecular BioSystems, 2009, 5, 1262.	2.9	75
97	Combining radiation and immunotherapy for synergistic antitumor therapy. Current Opinion in Molecular Therapeutics, 2009, 11, 37-42.	2.8	41
98	Use of radiolabeled monoclonal antibody to enhance vaccine-mediated antitumor effects. Cancer Immunology, Immunotherapy, 2008, 57, 1173-1183.	4.2	41
99	Recombinant Saccharomyces cerevisiae (yeast-CEA) as a potent activator of murine dendritic cells. Vaccine, 2008, 26, 509-521.	3.8	60
100	Combination of Docetaxel and Recombinant Vaccine Enhances T-Cell Responses and Antitumor Activity: Effects of Docetaxel on Immune Enhancement. Clinical Cancer Research, 2008, 14, 3536-3544.	7.0	207
101	The Use of Chelated Radionuclide (Samarium-153-Ethylenediaminetetramethylenephosphonate) to Modulate Phenotype of Tumor Cells and Enhance T Cell–Mediated Killing. Clinical Cancer Research, 2008, 14, 4241-4249.	7.0	64
102	Vaccination with a Recombinant <i>Saccharomyces cerevisiae</i> Expressing a Tumor Antigen Breaks Immune Tolerance and Elicits Therapeutic Antitumor Responses. Clinical Cancer Research, 2008, 14, 4316-4325.	7.0	76
103	Pilot Study of Vaccination with Recombinant CEA-MUC-1-TRICOM Poxviral-Based Vaccines in Patients with Metastatic Carcinoma. Clinical Cancer Research, 2008, 14, 3060-3069.	7.0	208
104	Synergizing radiation therapy and immunotherapy for curing incurable cancers. Opportunities and challenges. Oncology, 2008, 22, 1064-70; discussion 1075, 1080-1, 1084.	0.5	72
105	Combination Therapy of an Orthotopic Renal Cell Carcinoma Model Using Intratumoral Vector-Mediated Costimulation and Systemic Interleukin-2. Clinical Cancer Research, 2007, 13, 1936-1946.	7.0	23
106	Hadley J. Sharp, Elizabeth K. Wansley, Charlie T. Garnett, Mala Chakraborty, Kevin Camphausen, Jeffrey Schlom, James W. Hodge. Frontiers in Bioscience - Landmark, 2007, 12, 4900.	3.0	19
107	PART V. Modulation of Antitumor Vaccine StrategiesPreclinical and Clinical Studies of Recombinant Poxvirus Vaccines for Carcinoma Therapy. Critical Reviews in Immunology, 2007, 27, 451-462.	0.5	49
108	Cancer Vaccines: Preclinical Studies and Novel Strategies. Advances in Cancer Research, 2006, 95, 115-145.	5.0	64

#	Article	IF	CITATIONS
109	Costimulatory Molecules as Adjuvants for Immunotherapy. Frontiers in Bioscience - Landmark, 2006, 11, 788.	3.0	49
110	TRICOM Vector Based Cancer Vaccines. Current Pharmaceutical Design, 2006, 12, 351-361.	1.9	53
111	Combination Chemotherapy and Radiation of Human Squamous Cell Carcinoma of the Head and Neck Augments CTL-Mediated Lysis. Clinical Cancer Research, 2006, 12, 1897-1905.	7.0	85
112	Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. Journal of Experimental Medicine, 2006, 203, 1259-1271.	8.5	1,389
113	The Requirement of Multimodal Therapy (Vaccine, Local Tumor Radiation, and Reduction of Suppressor) Tj ETQq1	1,0,7843	14 ₅ gBT /C
114	Combining a Recombinant Cancer Vaccine with Standard Definitive Radiotherapy in Patients with Localized Prostate Cancer. Clinical Cancer Research, 2005, 11, 3353-3362.	7.0	357
115	Induction of an Antigen Cascade by Diversified Subcutaneous/Intratumoral Vaccination Is Associated with Antitumor Responses. Clinical Cancer Research, 2005, 11, 2416-2426.	7.0	79
116	Multiple Costimulatory Modalities Enhance CTL Avidity. Journal of Immunology, 2005, 174, 5994-6004.	0.8	128
117	Vaccines with Enhanced Costimulation Maintain High Avidity Memory CTL. Journal of Immunology, 2005, 175, 3715-3723.	0.8	45
118	Sublethal Irradiation of Human Tumor Cells Modulates Phenotype Resulting in Enhanced Killing by Cytotoxic T Lymphocytes. Cancer Research, 2004, 64, 7985-7994.	0.9	489
119	Intratumoral Vaccination and Diversified Subcutaneous/ Intratumoral Vaccination with Recombinant Poxviruses Encoding a Tumor Antigen and Multiple Costimulatory Molecules. Clinical Cancer Research, 2004, 10, 1090-1099.	7.0	39
120	External Beam Radiation of Tumors Alters Phenotype of Tumor Cells to Render Them Susceptible to Vaccine-Mediated T-Cell Killing. Cancer Research, 2004, 64, 4328-4337.	0.9	410
121	Amplification of the lytic potential of effector/memory CD8+ cells by vector-based enhancement of ICAM-1 (CD54) in target cells: implications for intratumoral vaccine therapy. Cancer Gene Therapy, 2004, 11, 665-680.	4.6	35
122	General Keynote: Vaccine Strategies for the Therapy of Ovarian Cancer. Gynecologic Oncology, 2003, 88, S97-S104.	1.4	13
123	A recombinant vector expressing transgenes for four T-cell costimulatory molecules (OX40L, B7-1,) Tj ETQq1 1 0.7 enhanced cytokine production. Cellular Immunology, 2003, 222, 45-57.	784314 rg 3.0	BT /Overloc 27
124	Selective Induction of High Avidity CTL by Altering the Balance of Signals from APC. Journal of Immunology, 2003, 170, 2523-2530.	0.8	120
125	Irradiation of Tumor Cells Up-Regulates Fas and Enhances CTL Lytic Activity and CTL Adoptive Immunotherapy. Journal of Immunology, 2003, 170, 6338-6347.	0.8	429
126	Vaccine therapy of established tumors in the absence of autoimmunity. Clinical Cancer Research, 2003, 9, 1837-49.	7.0	83

#	Article	IF	CITATIONS
127	Modified vaccinia virus ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses. Cancer Research, 2003, 63, 7942-9.	0.9	55
128	Vector-based delivery of tumor-associated antigens and T-cell co-stimulatory molecules in the induction of immune responses and anti-tumor immunity. Cancer Detection and Prevention, 2002, 26, 275-291.	2.1	19
129	Identification of an interferon-gamma-inducible carcinoembryonic antigen (CEA) CD8(+) T-cell epitope, which mediates tumor killing in CEA transgenic mice. Cancer Research, 2002, 62, 5058-64.	0.9	35
130	Vector-based vaccine/cytokine combination therapy to enhance induction of immune responses to a self-antigen and antitumor activity. Cancer Research, 2002, 62, 5770-7.	0.9	79
131	Acquisition of CD80 (B7-1) by T Cells. Journal of Immunology, 2001, 166, 2505-2513.	0.8	95
132	Vaccination with a recombinant vaccinia vaccine containing the B7-1 co-stimulatory molecule causes no significant toxicity and enhances T cell-mediated cytotoxicity. International Journal of Cancer, 2000, 85, 508-517.	5.1	8
133	Anti-Tumor Immunity Elicited by a Recombinant Vaccinia Virus Expressing CD70 (CD27L). Human Gene Therapy, 1999, 10, 1095-1103.	2.7	62
134	Cancer vaccine development. Expert Opinion on Investigational Drugs, 1998, 7, 1439-1452.	4.1	2
135	Construction and Characterization of a Recombinant Vaccinia Virus Expressing Murine Intercellular Adhesion Molecule-1: Induction and Potentiation of Antitumor Responses. Human Gene Therapy, 1997, 8, 851-860.	2.7	46
136	Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses. Vaccine, 1997, 15, 759-768.	3.8	170
137	Carcinoembryonic antigen as a target for cancer vaccines. Cancer Immunology, Immunotherapy, 1996, 43, 127-134.	4.2	58
138	A recombinant vaccinia virus expressing human prostate-specific antigen (PSA): Safety and immunogenicity in a non-human primate. International Journal of Cancer, 1995, 63, 231-237.	5.1	99