Ronalds Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/135125/publications.pdf

Version: 2024-02-01

53 papers 1,433 citations

304701 22 h-index 345203 36 g-index

54 all docs

54 docs citations

54 times ranked 1769 citing authors

#	Article	IF	CITATIONS
1	Techno-Economic Assessment, Scalability, and Applications of Aerosol Lignin Micro- and Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 11853-11868.	6.7	95
2	Conversion Economics of Forest Biomaterials: Risk and Financial Analysis of <scp>CNC</scp> Manufacturing. Biofuels, Bioproducts and Biorefining, 2017, 11, 682-700.	3.7	91
3	Technical and economic assessment for the production of torrefied ligno-cellulosic biomass pellets in the US. Energy Conversion and Management, 2013, 66, 153-164.	9.2	78
4	Cellulose micro―and nanofibrils (CMNF) manufacturing ―financial and risk assessment. Biofuels, Bioproducts and Biorefining, 2018, 12, 251-264.	3.7	77
5	Exploring the potential of Eucalyptus for energy production in the Southern United States: Financial analysis of delivered biomass. Part I. Biomass and Bioenergy, 2011, 35, 755-766.	5.7	73
6	Economics of cellulosic ethanol production in a thermochemical pathway for softwood, hardwood, corn stover and switchgrass. Fuel Processing Technology, 2012, 94, 113-122.	7.2	71
7	Global timber investments, wood costs, regulation, and risk. Biomass and Bioenergy, 2010, 34, 1667-1678.	5.7	64
8	Converting Eucalyptus biomass into ethanol: Financial and sensitivity analysis in a co-current dilute acid process. Part II. Biomass and Bioenergy, 2011, 35, 767-772.	5.7	56
9	High-Strength Antibacterial Chitosan–Cellulose Nanocrystal Composite Tissue Paper. Langmuir, 2019, 35, 104-112.	3 . 5	51
10	Understanding lignin micro- and nanoparticle nucleation and growth in aqueous suspensions by solvent fractionation. Green Chemistry, 2021, 23, 1001-1012.	9.0	47
11	Environmental life cycle impacts of cellulosic ethanol in the Southern U.S. produced from loblolly pine, eucalyptus, unmanaged hardwoods, forest residues, and switchgrass using a thermochemical conversion pathway. Fuel Processing Technology, 2015, 138, 164-174.	7.2	41
12	Global timber investments and trends, 2005-2011. New Zealand Journal of Forestry Science, 2014, 44, S7.	0.8	37
13	Supply Chain Analysis, Delivered Cost, and Life Cycle Assessment of Oil Palm Empty Fruit Bunch Biomass for Green Chemical Production in Malaysia. BioResources, 2014, 9, .	1.0	36
14	Toward an understanding of the increase in enzymatic hydrolysis by mechanical refining. Biotechnology for Biofuels, 2018, 11, 289.	6.2	36
15	Using micro- and nanofibrillated cellulose as a means to reduce weight of paper products: A review. BioResources, 2020, 15, 4553-4590.	1.0	33
16	Risk management consideration in the bioeconomy. Biofuels, Bioproducts and Biorefining, 2017, 11, 549-566.	3.7	32
17	Lignin fractionation from laboratory to commercialization: chemistry, scalability and techno-economic analysis. Green Chemistry, 2020, 22, 7448-7459.	9.0	32
18	Micro- and nanofibrillated cellulose from virgin and recycled fibers: A comparative study of its effects on the properties of hygiene tissue paper. Carbohydrate Polymers, 2021, 254, 117430.	10.2	29

#	Article	IF	CITATIONS
19	Comparison of wood and non-wood market pulps for tissue paper application. BioResources, 2019, 14, 6781-6810.	1.0	28
20	Economic evaluation of the conversion of industrial paper sludge to ethanol. Energy Economics, 2014, 44, 281-290.	12.1	27
21	Relationship between human perception of softness and instrument measurements. BioResources, 2019, 14, 780-795.	1.0	25
22	Life-Cycle Assessment of Bioethanol from Pine Residues via Indirect Biomass Gasification to Mixed Alcohols*. Forest Products Journal, 2012, 62, 314-325.	0.4	23
23	Technical and Economic Modeling for the Production of Torrefied Lignocellulosic Biomass for the U.S. Densified Fuel Industry. Bioenergy Research, 2013, 6, 263-275.	3.9	22
24	Co-production of electricity and ethanol, process economics of value prior combustion. Energy Conversion and Management, 2012, 62, 141-153.	9.2	21
25	Autohydrolysis Pretreatment of Mixed Softwood to Produce Value Prior to Combustion. Bioenergy Research, 2013, 6, 1094-1103.	3.9	21
26	Upcycling strategies for old corrugated containerboard to attain high-performance tissue paper: A viable answer to the packaging waste generation dilemma. Resources, Conservation and Recycling, 2021, 175, 105854.	10.8	20
27	Economics, Environmental Impacts, and Supply Chain Analysis of Cellulosic Biomass for Biofuels in the Southern US: Pine, Eucalyptus, Unmanaged Hardwoods, Forest Residues, Switchgrass, and Sweet Sorghum. BioResources, 2013, 9, .	1.0	19
28	Integrated conversion, financial, and risk modeling of cellulosic ethanol from woody and nonâ€woody biomass via dilute acid preâ€treatment. Biofuels, Bioproducts and Biorefining, 2014, 8, 755-769.	3.7	19
29	The NREL Biochemical and Thermochemical Ethanol Conversion Processes: Financial and Environmental Analysis Comparison. BioResources, 2015, 10, .	1.0	17
30	Technoâ€economic analysis of hemicellulose extraction from different types of lignocellulosic feedstocks and strategies for cost optimization. Biofuels, Bioproducts and Biorefining, 2020, 14, 225-241.	3.7	17
31	Performance and sustainability vs. the shelf price of tissue paper kitchen towels. BioResources, 2018, 13, 6868-6892.	1.0	17
32	Lignin modifications and perspectives towards applications of phenolic foams: A Review. BioResources, 2018, 13, 9158-9179.	1.0	16
33	Systematic Review of Torrefied Wood Economics. BioResources, 2017, 12, .	1.0	15
34	Impact of hardwood species on production cost of second generation ethanol. Bioresource Technology, 2012, 117, 193-200.	9.6	14
35	Environmental impacts of bioethanol using the NREL biochemical conversion route: multivariate analysis and single score results. Biofuels, Bioproducts and Biorefining, 2015, 9, 484-500.	3.7	14
36	Comparison between uncreped and creped handsheets on tissue paper properties using a creping simulator unit. Cellulose, 2020, 27, 5981-5999.	4.9	14

#	Article	IF	CITATIONS
37	Larch Biorefinery: Technical and Economic Evaluation. Industrial & Engineering Chemistry Research, 2014, 53, 1206-1213.	3.7	13
38	Wet-end addition of nanofibrillated cellulose pretreated with cationic starch to achieve paper strength with less refining and higher bulk. Tappi Journal, 2018, 17, 395-403.	0.5	13
39	Nanocellulose and Proteins: Exploiting Their Interactions for Production, Immobilization, and Synthesis of Biocompatible Materials. Advances in Polymer Science, 2015, , 207-224.	0.8	12
40	Assessing market power in the U.S. pulp and paper industry. Forest Policy and Economics, 2019, 102, 138-150.	3.4	10
41	Two-stage autohydrolysis and mechanical treatment to maximize sugar recovery from sweet sorghum bagasse. Bioresource Technology, 2019, 276, 140-145.	9.6	10
42	ASSESSMENT OF THE MOST ADEQUATE PRE-TREATMENTS AND WOODY BIOMASS SOURCES INTENDED FOR DIRECT CO-FIRING IN THE U.S BioResources, 2012, 7, .	1.0	10
43	Environmental LCA and Financial Analysis to Evaluate the Feasibility of Bio-based Sugar Feedstock Biomass Supply Globally: Part 2. Application of Multi-Criteria Decision-Making Analysis as a Method for Biomass Feedstock Comparisons. BioResources, 2016, 11, .	1.0	7
44	Technoâ€economic analysis of various biochemical conversion platforms for biosugar production: Tradeâ€offs of coâ€producing biopower versus pellets for either a greenfield, repurpose, or coâ€location siting context. Biofuels, Bioproducts and Biorefining, 2018, 12, 390-411.	3.7	6
45	Environmental LCA and Financial Analysis to Evaluate the Feasibility of Bio-based Sugar Feedstock Biomass Supply Globally: Part 1. Supply Chain Analysis. BioResources, 2015, 10, .	1.0	5
46	Using micro- and nanofibrillated cellulose as a means to reduce weight of paper products: A review. BioResources, 2020, 15, 4553-4590.	1.0	5
47	High-performance sustainable tissue paper from agricultural residue: a case study on fique fibers from Colombia. Cellulose, 2022, 29, 6907-6924.	4.9	5
48	Seed production of Gmelina arborea by controlled pollination. New Forests, 2004, 28, 167-177.	1.7	4
49	Methods to assess and control dusting and linting in the paper industry: a review. International Journal of Advanced Manufacturing Technology, 2022, 119, 5511-5528.	3.0	3
50	Hardwood Lumber Buyer Purchase Attributes and Relationships with Suppliers. Forest Products Journal, 2010, 60, 266-272.	0.4	2
51	Cover Image, Volume 11, Issue 4. Biofuels, Bioproducts and Biorefining, 2017, 11, i-i.	3.7	0
52	Cover Image, Volume 12, Issue 2. Biofuels, Bioproducts and Biorefining, 2018, 12, i.	3.7	0
53	Risk analysis, practice, and considerations in capital budgeting: Evidence from the field for the bio-based industry. BioResources, 2020, 16, 19-45.	1.0	0