Kang-Jun Baeg

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1351204/kang-jun-baeg-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

96
papers

5,981
citations

101
ext. papers

6,466
ext. citations

37
h-index

8.7
avg, IF

5.74
L-index

#	Paper	IF	Citations
96	Multimodal Capturing of Polysulfides by Phosphorus-Doped Carbon Composites for Flexible High-Energy-Density Lithium-Sulfur Batteries <i>Small</i> , 2022 , e2200326	11	4
95	A Novel Strategy to Overcome the Hurdle for Commercial All-Solid-State Batteries via Low-Cost Synthesis of Sulfide Solid Electrolytes (Small Methods 11/2021). <i>Small Methods</i> , 2021 , 5, 2170058	12.8	1
94	Flexible high-energy-density lithium-sulfur batteries using nanocarbon-embedded fibrous sulfur cathodes and membrane separators. <i>NPG Asia Materials</i> , 2021 , 13,	10.3	9
93	Versatile Solution-Processed OrganicIhorganic Hybrid Superlattices for Ultraflexible and Transparent High-Performance Optoelectronic Devices. <i>Advanced Functional Materials</i> , 2021 , 31, 21032	8 ¹ 5 ^{5.6}	8
92	Minimizing Temperature Gradient in Photonic Sintering for Defect-Free High-Conductivity Cu-Based Printed Patterns by Bidirectional Irradiation. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100769	4.6	O
91	Air-stable ambipolarity of nanofibril polymer semiconductors in staggered organic field-effect transistors. <i>Journal of the Korean Physical Society</i> , 2021 , 79, 468-476	0.6	О
90	A Novel Strategy to Overcome the Hurdle for Commercial All-Solid-State Batteries via Low-Cost Synthesis of Sulfide Solid Electrolytes <i>Small Methods</i> , 2021 , 5, e2100793	12.8	1
89	Solution-processed flexible nonvolatile organic field-effect transistor memory using polymer electret. <i>Organic Electronics</i> , 2021 , 99, 106331	3.5	2
88	Flexible Electronic Systems on Plastic Substrates and Textiles for Smart Wearable Technologies. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000071	6.8	31
87	Facile fabrication of solution-processed solid-electrolytes for high-energy-density all-solid-state-batteries by enhanced interfacial contact. <i>Scientific Reports</i> , 2020 , 10, 11923	4.9	12
86	Low-voltage-operating complementary-like circuits using ambipolar organic-inorganic hybrid thin-film transistors with solid-state-electrolyte gate insulator. <i>Organic Electronics</i> , 2019 , 75, 105358	3.5	9
85	Solution-Processed Nonvolatile Organic Transistor Memory Based on Semiconductor Blends. <i>ACS Applied Materials & Description (Materials & Description of Materials & Description of Mat</i>	9.5	41
84	High Throughput Bar-Coating Processed Organic-Inorganic Hybrid Multi-Layers for Gas Barrier Thin-Films. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 4299-4304	1.3	3
83	Reduction Treatment of Molecular-Doped Polymer Semiconductors for High-Performance N-Channel Organic Field-Effect Transistors. <i>Journal of the Korean Physical Society</i> , 2019 , 75, 821-826	0.6	3
82	Tuning non-volatile memory characteristics via molecular doping of polymer semiconductors based on ambipolar organic field-effect transistors. <i>Organic Electronics</i> , 2018 , 58, 12-17	3.5	20
81	Optimized Activation of Solution-Processed Amorphous Oxide Semiconductors for Flexible Transparent Conductive Electrodes. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700386	6.4	10
80	Simultaneous enhancement of charge density and molecular stacking order of polymer semiconductors by viologen dopants for high performance organic field-effect transistors. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 5497-5505	7.1	19

(2014-2018)

79	Controlled ambipolar charge transport of polymer semiconductors by viologen-doping for complementary-like electronic circuits. <i>Organic Electronics</i> , 2018 , 59, 224-229	3.5	7
78	Facile Preparation of Polyacrylic Acid-Bentonite Nanocomposite Inks for Gas Barrier Thin-Films with Ultrasonic Treatment. <i>Journal of the Korean Physical Society</i> , 2018 , 73, 973-977	0.6	1
77	Enhanced ambipolar charge transport in staggered carbon nanotube field-effect transistors for printed complementary-like circuits. <i>Current Applied Physics</i> , 2017 , 17, 541-547	2.6	6
76	Polymeric PN Heterointerface for Solution-Processed Integrated Organic Optoelectronic Systems. <i>Advanced Optical Materials</i> , 2017 , 5, 1700655	8.1	11
75	Systematic Study of Widely Applicable N-Doping Strategy for High-Performance Solution-Processed Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2016 , 26, 7886-7894	15.6	43
74	Favorable Molecular Orientation Enhancement in Semiconducting Polymer Assisted by Conjugated Organic Small Molecules. <i>Advanced Functional Materials</i> , 2016 , 26, 8527-8536	15.6	15
73	Ultrafast Heating for Intrinsic Properties of Atomically Thin Two-Dimensional Materials on Plastic Substrates. <i>ACS Applied Materials & Acs Applied & Acs </i>	9.5	5
72	Large Enhancement of Carrier Transport in Solution-Processed Field-Effect Transistors by Fluorinated Dielectric Engineering. <i>Advanced Materials</i> , 2016 , 28, 518-26	24	69
71	Organic nano-floating-gate transistor memory with metal nanoparticles. <i>Nano Convergence</i> , 2016 , 3, 10	9.2	31
70	Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 1441-1447	7.1	65
69	Materials Design via Optimized Intramolecular Noncovalent Interactions for High-Performance Organic Semiconductors. <i>Chemistry of Materials</i> , 2016 , 28, 2449-2460	9.6	84
68	Rearrangement of 1D conducting nanomaterials towards highly electrically conducting nanocomposite fibres for electronic textiles. <i>Scientific Reports</i> , 2015 , 5, 9300	4.9	19
67	Multi-layered nanocomposite dielectrics for high density organic memory devices. <i>Applied Physics Letters</i> , 2015 , 106, 043302	3.4	8
66	Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory. <i>Scientific Reports</i> , 2015 , 5, 12299	4.9	45
65	Chemically doped three-dimensional porous graphene monoliths for high-performance flexible field emitters. <i>Nanoscale</i> , 2015 , 7, 5495-502	7.7	10
64	Inkjet-Printed Electronic Circuits Based on Organic Semiconductors 2015 , 345-364		O
63	Monolithic Graphene Trees as Anode Material for Lithium Ion Batteries with High C-Rates. <i>Small</i> , 2015 , 11, 2774-81	11	18
62	One-step transfer and integration of multifunctionality in CVD graphene by TiOpgraphene oxide hybrid layer. <i>Small</i> , 2014 , 10, 2057-66	11	14

61	Improved transfer of chemical-vapor-deposited graphene through modification of intermolecular interactions and solubility of poly(methylmethacrylate) layers. <i>Carbon</i> , 2014 , 66, 612-618	10.4	41
60	Charge-trap flash-memory oxide transistors enabled by copper-zirconia composites. <i>Advanced Materials</i> , 2014 , 26, 7170-7	24	26
59	Stable charge storing in two-dimensional MoS2 nanoflake floating gates for multilevel organic flash memory. <i>Nanoscale</i> , 2014 , 6, 12315-23	7.7	52
58	Flexible organic phototransistors based on a combination of printing methods. <i>Organic Electronics</i> , 2014 , 15, 2677-2684	3.5	41
57	Control of Ambipolar and Unipolar Transport in Organic Transistors by Selective Inkjet-Printed Chemical Doping for High Performance Complementary Circuits. <i>Advanced Functional Materials</i> , 2014 , 24, 6252-6261	15.6	97
56	Gradual Controlling the Work Function of Metal Electrodes by Solution-Processed Mixed Interlayers for Ambipolar Polymer Field-Effect Transistors and Circuits. <i>Advanced Functional Materials</i> , 2014 , 24, 6484-6491	15.6	28
55	Regulating charge injection in ambipolar organic field-effect transistors by mixed self-assembled monolayers. <i>ACS Applied Materials & Date of the Mat</i>	9.5	23
54	Synthesis, Electronic Structure, and Charge Transport Characteristics of Naphthalenediimide-Based Co-Polymers with Different Oligothiophene Donor Units. <i>Advanced Functional Materials</i> , 2014 , 24, 1151	- 1 462	62
53	Simultaneous enhancement of electron injection and air stability in N-type organic field-effect transistors by water-soluble polyfluorene interlayers. <i>ACS Applied Materials & Distriction (Continued of the Applied of the Applied Materials & Distriction (Continued of the Applied of the Applied Materials & Distriction (Continued of the Applied Of the Applied Materials & Distriction (Continued of the Applied Of</i>	9.5	17
52	Diels-Alder Crosslinked Block-Copolymer Gate Dielectrics for Low Voltage Operated Top-Gate Organic Field-Effect Transistors. <i>Molecular Crystals and Liquid Crystals</i> , 2014 , 598, 69-77	0.5	1
51	Spray-printed organic field-effect transistors and complementary inverters. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 1500	7.1	38
50	Organic light detectors: photodiodes and phototransistors. <i>Advanced Materials</i> , 2013 , 25, 4267-95	24	913
49	Printed, Flexible, Organic Nano-Floating-Gate Memory: Effects of Metal Nanoparticles and Blocking Dielectrics on Memory Characteristics. <i>Advanced Functional Materials</i> , 2013 , 23, 3503-3512	15.6	181
48	. IEEE Electron Device Letters, 2013 , 34, 126-128	4.4	37
47	Effect of gate electrode conductivity on operation frequency of inkjet-printed complementary polymer ring oscillators. <i>Thin Solid Films</i> , 2013 , 546, 141-146	2.2	3
46	Efficient charge injection in p-type polymer field-effect transistors with low-cost molybdenum electrodes through V2O5 interlayer. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 5804-10	9.5	29
45	Optimal Ambipolar Charge Transport of Thienylenevinylene-Based Polymer Semiconductors by Changes in Conformation for High-Performance Organic Thin Film Transistors and Inverters. <i>Chemistry of Materials</i> , 2013 , 25, 1572-1583	9.6	49
44	Low-voltage, high speed inkjet-printed flexible complementary polymer electronic circuits. <i>Organic Electronics</i> , 2013 , 14, 1407-1418	3.5	57

43	Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. <i>Advanced Materials</i> , 2013 , 25, 4210-44	24	433
42	Inkjet-printing-based soft-etching technique for high-speed polymer ambipolar integrated circuits. <i>ACS Applied Materials & Interfaces</i> , 2013 , 5, 12579-86	9.5	10
41	High performance and stable N-channel organic field-effect transistors by patterned solvent-vapor annealing. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10745-52	9.5	53
40	Simple bar-coating process for large-area, high-performance organic field-effect transistors and ambipolar complementary integrated circuits. <i>Advanced Materials</i> , 2013 , 25, 4302-8	24	177
39	Nonvolatile Ferroelectric P(VDF-TrFE) Memory Transistors Based on Inkjet-Printed Organic Semiconductor. <i>ETRI Journal</i> , 2013 , 35, 734-737	1.4	10
38	Synthesis of poly(p-phenylene-vinylene) derivatives containing an oxadiazole pendant group and their applications to organic electronic devices. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 3321-30	1.3	4
37	Organic Electronics: Printed, Flexible, Organic Nano-Floating-Gate Memory: Effects of Metal Nanoparticles and Blocking Dielectrics on Memory Characteristics (Adv. Funct. Mater. 28/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 3482-3482	15.6	4
36	Electron injection enhancement by a Cs-salt interlayer in ambipolar organic field-effect transistors and complementary circuits. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16979		30
35	Effects of gate dielectrics and their solvents on characteristics of solution-processed N-channel polymer field-effect transistors. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21138		42
34	Combining electron-neutral building blocks with intramolecular "conformational locks" affords stable, high-mobility p- and n-channel polymer semiconductors. <i>Journal of the American Chemical Society</i> , 2012 , 134, 10966-73	16.4	174
33	Controlled charge transport by polymer blend dielectrics in top-gate organic field-effect transistors for low-voltage-operating complementary circuits. <i>ACS Applied Materials & Dielectron (Materials & Dielectron)</i> 17. 4, 6170 (Materials & Dielectron) 17. 4, 6170 (Materials & Dielectron) 17. 4, 6170 (Materials & Dielectron) 18. 4, 6170 (Materi	6 -8 4	65
32	Highly stable printed polymer field-effect transistors and inverters via polyselenophene conjugated polymers. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12774		30
31	High-Performance Top-Gated Organic Field-Effect Transistor Memory using Electrets for Monolithic Printed Flexible NAND Flash Memory. <i>Advanced Functional Materials</i> , 2012 , 22, 2915-2926	15.6	171
30	Remarkable enhancement of hole transport in top-gated N-type polymer field-effect transistors by a high-k dielectric for ambipolar electronic circuits. <i>Advanced Materials</i> , 2012 , 24, 5433-9	24	164
29	Top-gate staggered poly(3,3??-dialkyl-quarterthiophene) organic thin-film transistors with reverse-offset-printed silver source/drain electrodes. <i>Applied Physics Letters</i> , 2012 , 101, 133306	3.4	11
28	Mass production of polyfluorene nanowires using a melt-assisted wetting method. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 1260-4	1.3	1
27	Effect of curing temperature on nano-silver paste ink for organic thin-film transistors. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 3272-5	1.3	3
26	Organic Complementary Circuits: Remarkable Enhancement of Hole Transport in Top-Gated N-Type Polymer Field-Effect Transistors by a High-k Dielectric for Ambipolar Electronic Circuits (Adv. Mater 40/2012) Advanced Materials 2012 24 5402-5402	24	1

25	Bithiophene-imide-based polymeric semiconductors for field-effect transistors: synthesis, structure-property correlations, charge carrier polarity, and device stability. <i>Journal of the American Chemical Society</i> , 2011 , 133, 1405-18	16.4	206
24	Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits. <i>ACS Applied Materials & Description</i> (2011), 3, 3205-14	9.5	137
23	Polymer and Organic Nonvolatile Memory Devices [Chemistry of Materials, 2011, 23, 341-358]	9.6	461
22	Polymer Dielectrics and Orthogonal Solvent Effects for High-Performance Inkjet-Printed Top-Gated P-Channel Polymer Field-Effect Transistors. <i>ETRI Journal</i> , 2011 , 33, 887-896	1.4	26
21	Low-voltage-operated top-gate polymer thin-film transistors with high-capacitance P(VDF-TrFE)/PVDF-blended dielectrics. <i>Current Applied Physics</i> , 2011 ,	2.6	21
20	High speeds complementary integrated circuits fabricated with all-printed polymeric semiconductors. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2011 , 49, 62-67	2.6	96
19	Synthesis and Characterization of Poly(Dithieno[3,2-b:2?,3?-d]pyrrole) Derivatives Containing Thiophene Moieties and Their Application to Organic Devices. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 2308-2318	2.6	12
18	Highly Soluble Poly(thienylenevinylene) Derivatives with Charge-Carrier Mobility Exceeding 1 cm2V 1 s 1 . <i>Chemistry of Materials</i> , 2011 , 23, 4663-4665	9.6	67
17	Synthesis and characterization of low-band-gap poly(thienylenevinylene) derivatives for polymer solar cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11822		29
16	Improved performance uniformity of inkjet printed n-channel organic field-effect transistors and complementary inverters. <i>Organic Electronics</i> , 2011 , 12, 634-640	3.5	57
15	Low-voltage-operated top-gate polymer thin-film transistors with high capacitance poly(vinylidene fluoride-trifluoroethylene)/poly(methyl methacrylate) dielectrics. <i>Journal of Applied Physics</i> , 2010 , 108, 102810	2.5	28
14	Organic Nano-Floating-Gate Memory with Polymer:[6,6]-Phenyl-C61Butyric Acid Methyl Ester Composite Films. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 05EB01	1.4	34
13	Controllable Shifts in Threshold Voltage of Top-Gate Polymer Field-Effect Transistors for Applications in Organic Nano Floating Gate Memory. <i>Advanced Functional Materials</i> , 2010 , 20, 224-230	15.6	234
12	High mobility top-gated poly(3-hexylthiophene) field-effect transistors with high work-function Pt electrodes. <i>Thin Solid Films</i> , 2010 , 518, 4024-4029	2.2	43
11	A New Poly(thienylenevinylene) Derivative with High Mobility and Oxidative Stability for Organic Thin-Film Transistors and Solar Cells. <i>Advanced Materials</i> , 2009 , 21, 2808-2814	24	109
10	Charge transfer and trapping properties in polymer gate dielectrics for non-volatile organic field-effect transistor memory applications. <i>Solid-State Electronics</i> , 2009 , 53, 1165-1168	1.7	15
9	A thermally resistant and air-stable n-type organic semiconductor: Naphthalene diimide of 3,5-bis-trifluoromethyl aniline. <i>Synthetic Metals</i> , 2009 , 159, 2117-2121	3.6	29
8	Templated assembly of metal nanoparticles in nanoimprinted patterns for metal nanowire fabrication. <i>Nanotechnology</i> , 2009 , 20, 355302	3.4	19

LIST OF PUBLICATIONS

7	Effect of rubbed polyimide layer on the field-effect mobility in pentacene thin-film transistors. <i>Applied Physics Letters</i> , 2008 , 92, 052107	3.4	47
6	Polarity Effects of Polymer Gate Electrets on Non-Volatile Organic Field-Effect Transistor Memory. <i>Advanced Functional Materials</i> , 2008 , 18, 3678-3685	15.6	230
5	Effects of Copper Oxide/Gold Electrode as the Source-Drain Electrodes in Organic Thin-Film Transistors. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, H340		26
4	Organic Non-Volatile Memory Based on Pentacene Field-Effect Transistors Using a Polymeric Gate Electret. <i>Advanced Materials</i> , 2006 , 18, 3179-3183	24	267
3	Perfluorocyclobutane containing polymeric gate dielectric for organic thin film transistors with high on/off ratio. <i>Applied Physics Letters</i> , 2006 , 89, 202516	3.4	17
2	Effect of light irradiation on the characteristics of organic field-effect transistors. <i>Journal of Applied Physics</i> , 2006 , 100, 094501	2.5	58
1	All-Printed Paper-Based Micro-supercapacitors Using Water-Based Additive-Free Oxidized Single-Walled Carbon Nanotube Pastes. ACS Applied Energy Materials,	6.1	3