David B Pilgrim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1350990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myomesin is part of an integrity pathway that responds to sarcomere damage and disease. PLoS ONE, 2019, 14, e0224206.	2.5	12
2	Evolution and expression of the zebrafish unc119 paralogues indicates a conserved role in cilia. Gene Expression Patterns, 2019, 33, 1-10.	0.8	0
3	Coordinating the uncoordinated: UNC119 trafficking in cilia. European Journal of Cell Biology, 2017, 96, 643-652.	3.6	7
4	Still Heart Encodes a Structural HMT, SMYD1b, with Chaperone-Like Function during Fast Muscle Sarcomere Assembly. PLoS ONE, 2015, 10, e0142528.	2.5	12
5	The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract. European Journal of Human Genetics, 2014, 22, 1290-1297.	2.8	31
6	The titin A-band rod domain is dispensable for initial thick filament assembly in zebrafish. Developmental Biology, 2014, 387, 93-108.	2.0	37
7	Unc45b is essential for early myofibrillogenesis and costamere formation in zebrafish. Developmental Biology, 2014, 390, 26-40.	2.0	27
8	A Titan but not Necessarily a Ruler: Assessing the Role of Titin During Thick Filament Patterning and Assembly. Anatomical Record, 2014, 297, 1604-1614.	1.4	13
9	At the Start of the Sarcomere: A Previously Unrecognized Role for Myosin Chaperones and Associated Proteins during Early Myofibrillogenesis. Biochemistry Research International, 2012, 2012, 1-16.	3.3	19
10	Lack of Developmental Redundancy between Unc45 Proteins in Zebrafish Muscle Development. PLoS ONE, 2012, 7, e48861.	2.5	22
11	Cellular Differentiation in Primary Cell Cultures from Single Zebrafish Embryos as a Model for the Study of Myogenesis. Zebrafish, 2010, 7, 255-266.	1.1	12
12	Gdf6a is required for the initiation of dorsal–ventral retinal patterning and lens development. Developmental Biology, 2009, 333, 37-47.	2.0	67
13	UNC-45 is required for NMY-2 contractile function in early embryonic polarity establishment and germline cellularization in C. elegans. Developmental Biology, 2008, 314, 287-299.	2.0	77
14	Myosin Assembly, Maintenance and Degradation in Muscle: Role of the Chaperone UNC-45 in Myosin Thick Filament Dynamics. International Journal of Molecular Sciences, 2008, 9, 1863-1875.	4.1	25
15	The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish. Developmental Biology, 2007, 303, 483-492.	2.0	100
16	Conspecific and Interspecific Interactions Between the FEM-2 and the FEM-3 Sex-Determining Proteins Despite Rapid Sequence Divergence. Journal of Molecular Evolution, 2006, 62, 281-291.	1.8	14
17	NovelCaenorhabditis elegans unc-119 axon outgrowth defects correlate with behavioral phenotypes that are partially rescued by nonneural unc-119. Genesis, 2005, 42, 104-116.	1.6	7
18	Ontogeny and regulation of matrix metalloproteinase activity in the zebrafish embryo by in vitro and in vivo zymography. Developmental Biology, 2005, 286, 405-414.	2.0	35

DAVID B PILGRIM

#	Article	IF	CITATIONS
19	UNC-119 homolog required for normal development of the zebrafish nervous system. Genesis, 2004, 40, 223-230.	1.6	28
20	Sex-determination gene and pathway evolution in nematodes. BioEssays, 2003, 25, 221-231.	2.5	41
21	Evolution of the PP2C Family in Caenorhabditis: Rapid Divergence of the Sex-Determining Protein FEM-2. Journal of Molecular Evolution, 2002, 54, 267-282.	1.8	27
22	Mitochondrial Respiratory Chain Deficiency inCaenorhabditis elegans Results in Developmental Arrest and Increased Life Span. Journal of Biological Chemistry, 2001, 276, 32240-32246.	3.4	131
23	A regulatory cascade of three homeobox genes, <i>ceh-10</i> , <i>ttx-3</i> and <i>ceh-23</i> , controls cell fate specification of a defined interneuron class in <i>C. elegans</i> . Development (Cambridge), 2001, 128, 1951-1969.	2.5	261
24	Caenorhabditis elegans Unc-45 Is a Component of Muscle Thick Filaments and Colocalizes with Myosin Heavy Chain B, but Not Myosin Heavy Chain a. Journal of Cell Biology, 2000, 148, 375-384.	5.2	69
25	The Unc-119 Family of Neural Proteins is Functionally Conserved Between Humans, <i>Drosophila</i> and <i>C. Elegans</i> . Journal of Neurogenetics, 2000, 13, 191-212.	1.4	40
26	unc-45 gene ofCaenorhabditis elegans encodes a muscle-specific tetratricopeptide repeat-containing protein. Cytoskeleton, 1999, 42, 163-177.	4.4	54
27	Conservation of function and expression of unc-119 from two Caenorhabditis species despite divergence of non-coding DNA. Gene, 1996, 183, 77-85.	2.2	70
28	Expression of a Drosophila melanogaster amber suppressor tRNASer in Caenorhabditis elegans. Molecular Genetics and Genomics, 1993, 241-241, 26-32.	2.4	5