Isabella De Angelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1350789/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biology and Toxicology, 2005, 21, 1-26.	5.3	1,105
2	Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines. Toxicology in Vitro, 2005, 19, 853-858.	2.4	144
3	Comparative study of ZnO and TiO ₂ nanoparticles: physicochemical characterisation and toxicological effects on human colon carcinoma cells. Nanotoxicology, 2013, 7, 1361-1372.	3.0	117
4	Endometriosis and Organochlorinated Environmental Pollutants: A Case–Control Study on Italian Women of Reproductive Age. Environmental Health Perspectives, 2009, 117, 1070-1075.	6.0	112
5	An Inter-laboratory Study to Evaluate the Effects of Medium Composition on the Differentiation and Barrier Function of Caco-2 Cell Lines. ATLA Alternatives To Laboratory Animals, 2005, 33, 603-618.	1.0	101
6	Toxicology investigations with cell culture systems: 20 years after. Toxicology in Vitro, 2004, 18, 153-163.	2.4	90
7	Cacoâ€2 Cells as a Model for Intestinal Absorption. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2011, 47, Unit20.6.	1.1	89
8	Different mechanisms are involved in oxidative DNA damage and genotoxicity induction by ZnO and TiO2 nanoparticles in human colon carcinoma cells. Toxicology in Vitro, 2015, 29, 1503-1512.	2.4	89
9	Intestinal cell culture models: applications in toxicology and pharmacology. Cell Biology and Toxicology, 2001, 17, 301-317.	5.3	76
10	Towards FAIR nanosafety data. Nature Nanotechnology, 2021, 16, 644-654.	31.5	61
11	Aflatoxin M1 absorption and cytotoxicity on human intestinal in vitro model. Toxicon, 2006, 47, 409-415.	1.6	60
12	Effects of the pesticide clorpyrifos on an in vitro model of intestinal barrier. Toxicology in Vitro, 2007, 21, 308-313.	2.4	53
13	Choice and standardization of test protocols in cytotoxicology: A multicentre approach. Toxicology in Vitro, 1991, 5, 119-125.	2.4	46
14	Evaluation of Fumonisin B1 and its metabolites absorption and toxicity on intestinal cells line Caco-2. Toxicon, 2002, 40, 1181-1188.	1.6	38
15	Absorption of Fumonisin B1 and aminopentol on an in vitro model of intestinal epithelium; the role of P-glycoprotein. Toxicon, 2005, 45, 285-291.	1.6	32
16	Characterization of Furazolidone Apical-Related Effects to Human Polarized Intestinal Cells. Toxicology and Applied Pharmacology, 1998, 152, 119-127.	2.8	29
17	Quantitative analysis of metals and metal-based nano- and submicron-particles in tattoo inks. Chemosphere, 2020, 245, 125667.	8.2	27
18	Transport of Aflatoxin M1 in Human Intestinal Caco-2/TC7 Cells. Frontiers in Pharmacology, 2012, 3, 111.	3.5	26

#	Article	IF	CITATIONS
19	An Exploratory Study of Two Caco-2 Cell Models for Oral Absorption: A Report on Their Within-laboratory and Between-laboratory Variability, and Their Predictive Capacity. ATLA Alternatives To Laboratory Animals, 2010, 38, 367-386.	1.0	23
20	Evidence for cytochrome P4501A2-mediated protein covalent binding of thiabendazole and for its passive intestinal transport: use of human and rabbit derived cells. Chemico-Biological Interactions, 2000, 127, 109-124.	4.0	22
21	Established cell lines for safety assessment of food contaminants: Differing furazolidone toxicity to V 79, HEp-2 and Caco-2 cells. Food and Chemical Toxicology, 1994, 32, 481-488.	3.6	19
22	Functional alterations induced by the food contaminant furazolidone on the human tumoral intestinal cell line Caco-2. Toxicology in Vitro, 1993, 7, 403-406.	2.4	17
23	Biotransformation of Silver Nanoparticles into Oro-Gastrointestinal Tract by Integrated In Vitro Testing Assay: Generation of Exposure-Dependent Physical Descriptors for Nanomaterial Grouping. Nanomaterials, 2021, 11, 1587.	4.1	13
24	Formation of organoid structures and extracellular matrix production in an intestinal epithelial cell line during long-term in vitro culture. Cell Differentiation, 1986, 19, 139-147.	0.4	12
25	The juvenile toxicity study as a tool for a science-based risk assessment in the children population group. Reproductive Toxicology, 2017, 72, 136-141.	2.9	12
26	Critical issues in genotoxicity assessment of TiO ₂ nanoparticles by human peripheral blood mononuclear cells. Journal of Applied Toxicology, 2018, 38, 1471-1482.	2.8	12
27	A contribution to safety assessment of veterinary drug residues: in vitro / ex vivo studies on the intestinal toxicity and transport of covalently bound residues. Xenobiotica, 1999, 29, 641-654.	1.1	11
28	iPS, organoids and 3D models as advanced tools for in vitro toxicology. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 136-140.	1.5	10
29	Physico-chemical characteristics and cyto-genotoxic potential of ZnO and TiO ₂ nanoparticles on human colon carcinoma cells. Journal of Physics: Conference Series, 2011, 304, 012047.	0.4	8
30	Cytotoxic effects of wheat gliadin-derived peptides. Toxicology, 1985, 37, 225-232.	4.2	7
31	In vitro Study With Caco-2 Cells on Fumonisin B1: Aminopentol Intestinal Passage and Role of P-Glycoprotein. Veterinary Research Communications, 2005, 29, 285-287.	1.6	7
32	In vitro toxicity of some cosmetic ingredients. Food and Chemical Toxicology, 1986, 24, 477-479.	3.6	6
33	Evaluation of metabolic endpoints of acute cytotoxicity in V79 fibroblasts. Toxicology in Vitro, 1991, 5, 549-553.	2.4	6
34	Interaction of a green recombinant bovine herpesvirus 4 with in vitro-produced bovine embryos. Veterinary Research Communications, 2003, 27, 415-424.	1.6	6
35	The 3R principle: 60 years taken well. Preface. Annali Dell'Istituto Superiore Di Sanita, 2019, 55, 398-399.	0.4	6
36	Apoptosis evaluation in epithelial cells exposed to different chemicals: relevance of floating cells. Cell Biology and Toxicology, 2000, 16, 53-62.	5.3	4

ISABELLA DE ANGELIS

#	Article	IF	CITATIONS
37	Identification and coupling to adenylate cyclase of three different [3H]CGP 12177 binding sites in Caco-2 cell membranes. Pharmacological Research, 2001, 43, 393-398.	7.1	4
38	Protective effects of mannan in Caco-2/TC7 cells treated with wheat-derived peptides. Carbohydrate Polymers, 2005, 62, 338-343.	10.2	4
39	A harmonized and standardized in vitro approach produces reliable results on silver nanoparticles toxicity in different cell lines. Journal of Applied Toxicology, 2021, 41, 1980-1997.	2.8	4
40	Alternative in vitro methods to characterize the role of endocrine active substances (EASs) in hormone-targeted tissues. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 253-255.	1.5	3
41	FAIRification of nanosafety data to improve applicability of (Q)SAR approaches: a case study on in vitro Comet assay genotoxicity data. Computational Toxicology, 2021, 20, 100190.	3.3	2
42	3Rs in Education. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 185-186.	1.5	2
43	Alternative Methods: 3Rs, Research and Regulatory Aspects. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 378-380.	1.5	2
44	IN vitro toxicology: From INtestine to braIN. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 439-440.	1.5	2
45	Regulatory perspectives on medical nanotechnologies. , 2020, , 273-291.		1
46	Contributions to Alternatives From Italy and Spain. , 2019, , 29-34.		0
47	Virtual class on alternative methods: Ethics and science. ALTEX: Alternatives To Animal Experimentation, 2021, 38, 156-157.	1.5	0
48	Application of computational methods in replacement – an IPAM webinar. ALTEX: Alternatives To Animal Experimentation, 2021, 38, 348-350.	1.5	0
49	Toxicology and stem cells: New frontiers. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 94-94.	1.5	0
50	3Replacement Winter School – Out of the barriers: In vitro models in toxicology. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 520-521.	1.5	0
51	In vitro approaches to environmental pollutants: New models, endpoints, and strategies. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 329-330.	1.5	0
52	Non animal methodologies (NAMs): Research, testing, assessment and applications – ecopa Symposium 2019. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 317-320.	1.5	0
53	Innovative in vitro strategies for food and environmental safety. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 681-683.	1.5	0