Jing Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1350504/publications.pdf

Version: 2024-02-01

430442 500791 28 942 18 28 citations h-index g-index papers 28 28 28 867 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Physicochemical characteristics and functional properties of high methoxyl pectin with different degree of esterification. Food Chemistry, 2022, 375, 131806.	4.2	52
2	Pectin gels based on H+/(NH4)2SO4 and its potential in sustained release of NH4+. International Journal of Biological Macromolecules, 2022, 208, 486-493.	3.6	3
3	Hydrophobic surface modification of citrus fiber using octenyl succinic anhydride (OSA): Preparation, characterization and emulsifying properties. Food Hydrocolloids, 2022, 132, 107832.	5.6	16
4	Structural and physicochemical properties of pectin-rich dietary fiber prepared from citrus peel. Food Hydrocolloids, 2021, 110, 106140.	5 . 6	102
5	Citrus fiber for the stabilization of O/W emulsion through combination of Pickering effect and fiber-based network. Food Chemistry, 2021, 343, 128523.	4.2	48
6	Micro―and nanoâ€emulsions based on soluble soy polysaccharide and octenyl succinic anhydride modified soluble soy polysaccharide. International Journal of Food Science and Technology, 2021, 56, 3034-3043.	1.3	4
7	Oxalic extraction of high methoxyl pectin and its application as a stabiliser. International Journal of Food Science and Technology, 2021, 56, 5220-5229.	1.3	6
8	Extraction and characterisation of pectin polysaccharide from soybean dreg and its dispersion stability in acidified milk drink. International Journal of Food Science and Technology, 2021, 56, 5230-5241.	1.3	3
9	Acid/ethanol induced pectin gelling and its application in emulsion gel. Food Hydrocolloids, 2021, 118, 106774.	5.6	27
10	Enzymatic and enzyme-physical modification of citrus fiber by xylanase and planetary ball milling treatment. Food Hydrocolloids, 2021, 121, 107015.	5 . 6	31
11	Effects of konjac glucomannan with different molecular weights on gut microflora with antibiotic perturbance in in vitro fecal fermentation. Carbohydrate Polymers, 2021, 273, 118546.	5.1	24
12	Emulsifying properties of high methoxyl pectins in binary systems of water-ethanol. Carbohydrate Polymers, 2020, 229, 115420.	5.1	26
13	Modified citrus pectins by UV/H2O2 oxidation at acidic and basic conditions: Structures and in vitro anti-inflammatory, anti-proliferative activities. Carbohydrate Polymers, 2020, 247, 116742.	5.1	30
14	Structural characterization of pectin-bismuth complexes and their aggregation in acidic conditions. International Journal of Biological Macromolecules, 2020, 154, 788-794.	3.6	22
15	Pea soluble polysaccharides obtained from two enzyme-assisted extraction methods and their application as acidified milk drinks stabilizers. Food Research International, 2018, 109, 544-551.	2.9	29
16	Pretreatment with concurrent UV photocatalysis and alkaline H2O2 enhanced the enzymatic hydrolysis of sisal waste. Bioresource Technology, 2018, 267, 517-523.	4.8	27
17	Fractionation and characterization of soluble soybean polysaccharide esterified of octenyl succinic anhydride and its effect as a stabilizer in acidified milk drinks. Food Hydrocolloids, 2018, 85, 215-221.	5. 6	26
18	Subcritical Water Induced Complexation of Soy Protein and Rutin: Improved Interfacial Properties and Emulsion Stability. Journal of Food Science, 2016, 81, C2149-57.	1.5	31

#	Article	IF	CITATIONS
19	The influence of heat treatment on acid-tolerant emulsions prepared from acid soluble soy protein and soy soluble polysaccharide complexes. Food Research International, 2016, 89, 211-218.	2.9	35
20	Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles. Food Hydrocolloids, 2016, 61, 300-310.	5.6	229
21	Formation of soy protein isolate–dextran conjugates by moderate Maillard reaction in macromolecular crowding conditions. Journal of the Science of Food and Agriculture, 2013, 93, 316-323.	1.7	62
22	Rheological Properties of Soybean \hat{l}^2 -Conglycinin in Aqueous Dispersions: Effects of Concentration, lonic Strength and Thermal Treatment. International Journal of Food Properties, 2011, 14, 264-279.	1.3	5
23	Effect of transglutaminase on the functional properties of GDL (gluconoâ€deltaâ€lactone) coldâ€set soybean glycinin gel. International Journal of Food Science and Technology, 2011, 46, 963-971.	1.3	11
24	Surface charge and conformational properties of phaseolin, the major globulin in red kidney bean ($\langle i \rangle$ Phaseolus vulgaris $\langle i \rangle$ L): effect of pH. International Journal of Food Science and Technology, 2011, 46, 1628-1635.	1.3	18
25	Physicochemical and structural characterisation of protein isolate, globulin and albumin from soapnut seeds (Sapindus mukorossi Gaertn.). Food Chemistry, 2011, 128, 420-426.	4.2	35
26	Characterisation of soybean glycinin and βâ€conglycinin fractionated by using MgCl ₂ instead of CaCl ₂ . International Journal of Food Science and Technology, 2010, 45, 155-162.	1.3	3
27	An Improved Isolation Method of Soy βâ€Conglycinin Subunits and Their Characterization. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 997-1004.	0.8	18
28	Improvement of functional properties of acidâ€precipitated soy protein by the attachment of dextran through Maillard reaction. International Journal of Food Science and Technology, 2009, 44, 2296-2302.	1.3	19