List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1350371/publications.pdf Version: 2024-02-01

		12322	23514
223	14,970	69	111
papers	citations	h-index	g-index
231	231	231	9855
all docs	docs citations	times ranked	citing authors

Тимынн Гт

#	Article	IF	CITATIONS
1	Recycling of Spent Lithium-Ion Battery: A Critical Review. Critical Reviews in Environmental Science and Technology, 2014, 44, 1129-1165.	6.6	636
2	Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. Journal of Hazardous Materials, 2015, 295, 112-118.	6.5	390
3	Minimizing the increasing solid waste through zero waste strategy. Journal of Cleaner Production, 2015, 104, 199-210.	4.6	351
4	Global status of recycling waste solar panels: A review. Waste Management, 2018, 75, 450-458.	3.7	327
5	Single-use plastics: Production, usage, disposal, and adverse impacts. Science of the Total Environment, 2021, 752, 141772.	3.9	281
6	Environmental pollution of electronic waste recycling in India: A critical review. Environmental Pollution, 2016, 211, 259-270.	3.7	266
7	Solving spent lithium-ion battery problems in China: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 2015, 52, 1759-1767.	8.2	258
8	Uncovering the Recycling Potential of "New―WEEE in China. Environmental Science & Technology, 2016, 50, 1347-1358.	4.6	256
9	A combined recovery process of metals in spent lithium-ion batteries. Chemosphere, 2009, 77, 1132-1136.	4.2	250
10	Urban Mining of E-Waste is Becoming More Cost-Effective Than Virgin Mining. Environmental Science & Technology, 2018, 52, 4835-4841.	4.6	246
11	Environmental effects of heavy metals derived from the e-waste recycling activities in China: A systematic review. Waste Management, 2014, 34, 2587-2594.	3.7	202
12	"Control-Alt-Delete― Rebooting Solutions for the E-Waste Problem. Environmental Science & Technology, 2015, 49, 7095-7108.	4.6	198
13	Hazardous waste generation and management in China: A review. Journal of Hazardous Materials, 2008, 158, 221-227.	6.5	192
14	A review on human health consequences of metals exposure to e-waste in China. Environmental Pollution, 2015, 196, 450-461.	3.7	191
15	An international comparative study of end-of-life vehicle (ELV) recycling systems. Journal of Material Cycles and Waste Management, 2014, 16, 1-20.	1.6	190
16	A systematic review of the human body burden of e-waste exposure in China. Environment International, 2014, 68, 82-93.	4.8	188
17	Current status and research on E-waste issues in Asia. Journal of Material Cycles and Waste Management, 2006, 8, 1-12.	1.6	187
18	Recovery of valuable materials from waste liquid crystal display panel. Waste Management, 2009, 29, 2033-2039.	3.7	185

#	Article	IF	CITATIONS
19	Rare Earth Elements Recovery from Waste Fluorescent Lamps: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 749-776.	6.6	180
20	Characterization and Inventory of PCDD/Fs and PBDD/Fs Emissions from the Incineration of Waste Printed Circuit Board. Environmental Science & amp; Technology, 2011, 45, 6322-6328.	4.6	179
21	Management of electrical and electronic waste: A comparative evaluation of China and India. Renewable and Sustainable Energy Reviews, 2017, 76, 434-447.	8.2	174
22	Circular economy and electronic waste. Nature Electronics, 2019, 2, 86-89.	13.1	171
23	Examining the technology acceptance for dismantling of waste printed circuit boards in light of recycling and environmental concerns. Journal of Environmental Management, 2011, 92, 392-399.	3.8	158
24	Innovating e-waste management: From macroscopic to microscopic scales. Science of the Total Environment, 2017, 575, 1-5.	3.9	157
25	An analysis of the plastic waste trade and management in Asia. Waste Management, 2021, 119, 242-253.	3.7	151
26	Examining environmental management of e-waste: China's experience and lessons. Renewable and Sustainable Energy Reviews, 2017, 72, 1076-1082.	8.2	142
27	An overview of global power lithium-ion batteries and associated critical metal recycling. Journal of Hazardous Materials, 2022, 425, 127900.	6.5	141
28	Regional or global WEEE recycling. Where to go?. Waste Management, 2013, 33, 923-934.	3.7	140
29	Residents' behaviors, attitudes, and willingness to pay for recycling e-waste in Macau. Journal of Environmental Management, 2012, 106, 8-16.	3.8	139
30	Heavy metal contamination of surface soil in electronic waste dismantling area: site investigation and source-apportionment analysis. Waste Management and Research, 2011, 29, 727-738.	2.2	138
31	Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries. Journal of Hazardous Materials, 2014, 271, 50-56.	6.5	137
32	Recovery of rare and precious metals from urban mines—A review. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	3.3	132
33	Recycling Metals from Wastes: A Novel Application of Mechanochemistry. Environmental Science & Technology, 2015, 49, 5849-5861.	4.6	127
34	A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries. Journal of Hazardous Materials, 2019, 380, 120846.	6.5	127
35	Perspective of electronic waste management in China based on a legislation comparison between China and the EU. Journal of Cleaner Production, 2013, 51, 80-87.	4.6	122
36	Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste. Applied Energy, 2016, 172, 47-58.	5.1	121

#	Article	IF	CITATIONS
37	Status quo of e-waste management in mainland China. Journal of Material Cycles and Waste Management, 2006, 8, 13-20.	1.6	120
38	Environmental performance of municipal solid waste strategies based on LCA method: a case study of Macau. Journal of Cleaner Production, 2013, 57, 92-100.	4.6	119
39	Modelling the correlations of e-waste quantity with economic increase. Science of the Total Environment, 2018, 613-614, 46-53.	3.9	113
40	Ecodesign in Consumer Electronics: <i>Past, Present, and Future</i> . Critical Reviews in Environmental Science and Technology, 2015, 45, 840-860.	6.6	112
41	Acid-Free and Selective Extraction of Lithium from Spent Lithium Iron Phosphate Batteries via a Mechanochemically Induced Isomorphic Substitution. Environmental Science & Technology, 2019, 53, 9781-9788.	4.6	112
42	Measuring the recyclability of e-waste: an innovative method and its implications. Journal of Cleaner Production, 2016, 131, 156-162.	4.6	110
43	Solving e-waste problem using an integrated mobile recycling plant. Journal of Cleaner Production, 2015, 90, 55-59.	4.6	108
44	Innovated Application of Mechanical Activation To Separate Lead from Scrap Cathode Ray Tube Funnel Glass. Environmental Science & Technology, 2012, 46, 4109-4114.	4.6	106
45	Environmental pollution and human body burden from improper recycling of e-waste in China: A short-review. Environmental Pollution, 2018, 243, 1310-1316.	3.7	103
46	Unveiling the Role and Mechanism of Mechanochemical Activation on Lithium Cobalt Oxide Powders from Spent Lithium-Ion Batteries. Environmental Science & Technology, 2018, 52, 13136-13143.	4.6	102
47	Life cycle assessment study of a Chinese desktop personal computer. Science of the Total Environment, 2009, 407, 1755-1764.	3.9	100
48	Relationship between e-waste recycling and human health risk in India: a critical review. Environmental Science and Pollution Research, 2016, 23, 11509-11532.	2.7	98
49	A critical review on the sources and instruments of marine microplastics and prospects on the relevant management in China. Waste Management and Research, 2018, 36, 898-911.	2.2	98
50	Characteristic of low-temperature pyrolysis of printed circuit boards subjected to various atmosphere. Resources, Conservation and Recycling, 2010, 54, 810-815.	5.3	97
51	Global responses for recycling waste CRTs in e-waste. Waste Management, 2016, 57, 187-197.	3.7	95
52	An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE. Resources, Conservation and Recycling, 2017, 126, 228-239.	5.3	94
53	Remanufacturing strategies: A solution for WEEE problem. Journal of Cleaner Production, 2017, 149, 126-136.	4.6	92
54	Efficient Separation of Aluminum Foil and Cathode Materials from Spent Lithium-Ion Batteries Using a Low-Temperature Molten Salt. ACS Sustainable Chemistry and Engineering, 2019, 7, 8287-8294.	3.2	92

#	Article	lF	CITATIONS
55	Mapping anthropogenic mineral generation in China and its implications for a circular economy. Nature Communications, 2020, 11, 1544.	5.8	91
56	A review of waste prevention through 3R under the concept of circular economy in China. Journal of Material Cycles and Waste Management, 2017, 19, 1314-1323.	1.6	89
57	Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion. Energy, 2017, 118, 377-386.	4.5	83
58	High-value utilization of graphite electrodes in spent lithium-ion batteries: From 3D waste graphite to 2D graphene oxide. Journal of Hazardous Materials, 2021, 401, 123715.	6.5	83
59	Green Process of Metal Recycling: Coprocessing Waste Printed Circuit Boards and Spent Tin Stripping Solution. ACS Sustainable Chemistry and Engineering, 2017, 5, 3524-3534.	3.2	81
60	Repercussions of COVID-19 pandemic on solid waste generation and management strategies. Frontiers of Environmental Science and Engineering, 2021, 15, 115.	3.3	80
61	Current Status and Future Perspective of Waste Printed Circuit Boards Recycling. Procedia Environmental Sciences, 2012, 16, 590-597.	1.3	78
62	On the sustainability of cobalt utilization in China. Resources, Conservation and Recycling, 2015, 104, 12-18.	5.3	77
63	Effects of organic composition on mesophilic anaerobic digestion of food waste. Bioresource Technology, 2017, 244, 213-224.	4.8	77
64	Molten salt oxidation: A versatile and promising technology for the destruction of organic-containing wastes. Chemosphere, 2011, 84, 1167-1174.	4.2	76
65	Life cycle assessment of TV sets in China: A case study of the impacts of CRT monitors. Waste Management, 2012, 32, 1926-1936.	3.7	76
66	Implications for the carrying capacity of lithium reserve in China. Resources, Conservation and Recycling, 2013, 80, 58-63.	5.3	75
67	A Facile, Environmentally Friendly, and Low-Temperature Approach for Decomposition of Polyvinylidene Fluoride from the Cathode Electrode of Spent Lithium-ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 12799-12806.	3.2	75
68	Systematic characterization of generation and management of e-waste in China. Environmental Science and Pollution Research, 2016, 23, 1929-1943.	2.7	74
69	Establishing indices for groundwater contamination risk assessment in the vicinity of hazardous waste landfills in China. Environmental Pollution, 2012, 165, 77-90.	3.7	73
70	Occurrence, characteristics and leakage of polybrominated diphenyl ethers in leachate from municipal solid waste landfills in China. Environmental Pollution, 2014, 184, 94-100.	3.7	73
71	Human exposure to PBDEs in e-waste areas: A review. Environmental Pollution, 2020, 267, 115634.	3.7	73
72	Polybrominated diphenyl ethers fate in China: A review with an emphasis on environmental contamination levels, human exposure and regulation. Journal of Environmental Management, 2012, 113, 22-30.	3.8	72

#	Article	IF	CITATIONS
73	Potential recycling availability and capacity assessment on typical metals in waste mobile phones: A current research study in China. Journal of Cleaner Production, 2017, 148, 509-517.	4.6	72
74	A study on legislative and policy tools for promoting the circular economic model for waste management in China. Journal of Material Cycles and Waste Management, 2011, 13, 103-112.	1.6	70
75	Spent rechargeable lithium batteries in e-waste: composition and its implications. Frontiers of Environmental Science and Engineering, 2014, 8, 792-796.	3.3	70
76	Waste electrical and electronic equipment management and Basel Convention compliance in Brazil, Russia, India, China and South Africa (BRICS) nations. Waste Management and Research, 2016, 34, 693-707.	2.2	70
77	Sustainability evaluation of e-waste treatment based on emergy analysis and the LCA method: A case study of a trial project in Macau. Ecological Indicators, 2013, 30, 138-147.	2.6	68
78	A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid. Chemosphere, 2013, 93, 1288-1294.	4.2	65
79	Generation and distribution of PAHs in the process of medical waste incineration. Waste Management, 2013, 33, 1165-1173.	3.7	65
80	Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste. Applied Energy, 2018, 213, 136-147.	5.1	65
81	Characterizing the emission of chlorinated/brominated dibenzo-p-dioxins and furans from low-temperature thermal processing of waste printed circuit board. Environmental Pollution, 2012, 161, 185-191.	3.7	64
82	Evaluating waste printed circuit boards recycling: Opportunities and challenges, a mini review. Waste Management and Research, 2017, 35, 346-356.	2.2	64
83	Recycling Tin from Electronic Waste: A Problem That Needs More Attention. ACS Sustainable Chemistry and Engineering, 2017, 5, 9586-9598.	3.2	62
84	Waste prevention for sustainable resource and waste management. Journal of Material Cycles and Waste Management, 2017, 19, 1295-1313.	1.6	60
85	Recycling Indium from Scraped Glass of Liquid Crystal Display: Process Optimizing and Mechanism Exploring. ACS Sustainable Chemistry and Engineering, 2015, 3, 1306-1312.	3.2	59
86	Characterizing the Materials Composition and Recovery Potential from Waste Mobile Phones: A Comparative Evaluation of Cellular and Smart Phones. ACS Sustainable Chemistry and Engineering, 2018, 6, 13016-13024.	3.2	59
87	E-waste management in India: A mini-review. Waste Management and Research, 2018, 36, 408-414.	2.2	59
88	Selective extraction of lithium from a spent lithium iron phosphate battery by mechanochemical solid-phase oxidation. Green Chemistry, 2021, 23, 1344-1352.	4.6	59
89	Toxicity trends in E-Waste: A comparative analysis of metals in discarded mobile phones. Journal of Hazardous Materials, 2019, 380, 120898.	6.5	58
90	Application of mechanochemistry to metal recovery from second-hand resources: a technical overview. Environmental Sciences: Processes and Impacts, 2015, 17, 1522-1530.	1.7	57

#	Article	IF	CITATIONS
91	Zero waste approach towards a sustainable waste management. Resources, Environment and Sustainability, 2021, 3, 100014.	2.9	57
92	Rethinking residential consumers' behavior in discarding obsolete mobile phones in China. Journal of Cleaner Production, 2018, 195, 1228-1236.	4.6	56
93	Examining the sustainability of China's nickel supply: 1950–2050. Resources, Conservation and Recycling, 2018, 139, 188-193.	5.3	52
94	Behavior of urban residents toward the discarding of waste electrical and electronic equipment: a case study in Baoding, China. Waste Management and Research, 2012, 30, 1187-1197.	2.2	51
95	A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	3.3	51
96	Exploring residents' attitudes and willingness to pay for solid waste management in Macau. Environmental Science and Pollution Research, 2016, 23, 16456-16462.	2.7	50
97	Towards to sustainable energy-efficient city: A case study of Macau. Renewable and Sustainable Energy Reviews, 2017, 75, 504-514.	8.2	49
98	Comparative life cycle GHG emissions from local electricity generation using heavy oil, natural gas, and MSW incineration in Macau. Renewable and Sustainable Energy Reviews, 2018, 81, 2450-2459.	8.2	49
99	Current Status and Future Perspective of Recycling Copper by Hydrometallurgy from Waste Printed Circuit Boards. Procedia Environmental Sciences, 2016, 31, 162-170.	1.3	46
100	Solutions and challenges in recycling waste cathode-ray tubes. Journal of Cleaner Production, 2016, 133, 188-200.	4.6	46
101	The life cycle assessment of an e-waste treatment enterprise in China. Journal of Material Cycles and Waste Management, 2013, 15, 469-475.	1.6	45
102	Characterization of brominated flame retardants from e-waste components in China. Waste Management, 2017, 68, 498-507.	3.7	45
103	Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration. Scientific Reports, 2016, 6, 19961.	1.6	44
104	Measuring the generation and management status of waste office equipment in China: a case study of waste printers. Journal of Cleaner Production, 2016, 112, 4461-4468.	4.6	44
105	Sustainability evaluation of an e-waste treatment enterprise based on emergy analysis in China. Ecological Engineering, 2012, 42, 223-231.	1.6	42
106	Recycling and pollution control of the End of Life Vehicles in China. Journal of Material Cycles and Waste Management, 2014, 16, 31-38.	1.6	42
107	Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste. Waste Management, 2018, 73, 156-164.	3.7	42
108	A study of waste fluorescent lamp generation in mainland China. Journal of Cleaner Production, 2014, 81, 227-233.	4.6	41

#	Article	IF	CITATIONS
109	Improvement in rare earth element recovery from waste trichromatic phosphors by mechanical activation. Journal of Cleaner Production, 2017, 151, 361-370.	4.6	41
110	Uncovering residents' behaviors, attitudes, and WTP for recycling e-waste: a case study of Zhuhai city, China. Environmental Science and Pollution Research, 2020, 27, 2386-2399.	2.7	41
111	Enhanced recovery of rare earth elements from waste phosphors by mechanical activation. Journal of Cleaner Production, 2017, 142, 2187-2191.	4.6	40
112	Revealing the Dissolution Mechanism of Polyvinylidene Fluoride of Spent Lithium-Ion Batteries in Waste Oil-Based Methyl Ester Solvent. ACS Sustainable Chemistry and Engineering, 2020, 8, 7489-7496.	3.2	40
113	Integrated bioleaching of copper metal from waste printed circuit board—a comprehensive review of approaches and challenges. Environmental Science and Pollution Research, 2016, 23, 21141-21156.	2.7	39
114	Characterizing the environmental implications of the recycling of non-metallic fractions from waste printed circuit boards. Journal of Cleaner Production, 2016, 137, 546-554.	4.6	39
115	Converting spent lithium cobalt oxide battery cathode materials into high-value products via a mechanochemical extraction and thermal reduction route. Journal of Hazardous Materials, 2021, 413, 125222.	6.5	39
116	Accelerating circular economy solutions to achieve the 2030 agenda for sustainable development goals. , 2022, 1, 100001.		39
117	Mechanochemical sulfidization of lead oxides by grinding with sulfur. Powder Technology, 2012, 230, 63-66.	2.1	37
118	Development potential of e-waste recycling industry in China. Waste Management and Research, 2015, 33, 533-542.	2.2	37
119	Environmental risk assessment of CRT and PCB workshops in a mobile e-waste recycling plant. Environmental Science and Pollution Research, 2015, 22, 12366-12373.	2.7	37
120	Brominated Flame Retardants (BFRs) in Waste Electrical and Electronic Equipment (WEEE) Plastics and Printed Circuit Boards (PCBs). Procedia Environmental Sciences, 2012, 16, 552-559.	1.3	36
121	Take back and treatment of discarded electronics: a scientific update. Frontiers of Environmental Science and Engineering, 2013, 7, 475-482.	3.3	35
122	Selective regeneration of lithium from spent lithium-ion batteries using ionic substitution stimulated by mechanochemistry. Journal of Cleaner Production, 2021, 279, 123612.	4.6	35
123	Lead recovery from cathode ray tube funnel glass with mechanical activation. Journal of the Air and Waste Management Association, 2013, 63, 2-10.	0.9	34
124	Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production. Renewable Energy, 2020, 148, 168-175.	4.3	34
125	Effects of organic composition on the anaerobic biodegradability of food waste. Bioresource Technology, 2017, 243, 836-845.	4.8	33
126	Estimating the Evolution of Urban Mining Resources in Hong Kong, Up to the Year 2050. Environmental Science & Technology, 2019, 53, 1394-1403.	4.6	33

#	Article	IF	CITATIONS
127	Exploring a green route for recycling spent lithium-ion batteries: Revealing and solving deep screening problem. Journal of Cleaner Production, 2020, 255, 120269.	4.6	33
128	Trends of production, consumption and environmental emissions of Decabromodiphenyl ether in mainland China. Environmental Pollution, 2020, 260, 114022.	3.7	33
129	Comparative Examining and Analysis of E-waste Recycling in Typical Developing and Developed Countries. Procedia Environmental Sciences, 2016, 35, 676-680.	1.3	32
130	Enhanced split-phase resource utilization of kitchen waste by thermal pre-treatment. Energy, 2016, 98, 155-167.	4.5	32
131	A simplified method to evaluate the recycling potential of e-waste. Journal of Cleaner Production, 2017, 168, 1518-1524.	4.6	32
132	Status of Endâ€ofâ€life Electronic Product Remanufacturing in China. Journal of Industrial Ecology, 2014, 18, 577-587.	2.8	31
133	Measuring the sustainability of tin in China. Science of the Total Environment, 2018, 635, 1351-1359.	3.9	31
134	Examining regeneration technologies for etching solutions: a critical analysis of the characteristics and potentials. Journal of Cleaner Production, 2016, 113, 973-980.	4.6	30
135	Designing and examining e-waste recycling process: methodology and case studies. Environmental Technology (United Kingdom), 2017, 38, 652-660.	1.2	30
136	Na ₂ ZrO ₃ as an Effective Bifunctional Catalyst–Sorbent during Cellulose Pyrolysis. Industrial & Engineering Chemistry Research, 2017, 56, 3223-3230.	1.8	29
137	Examining the Temporal Demand and Sustainability of Copper in China. Environmental Science & Technology, 2019, 53, 13812-13821.	4.6	29
138	Rethinking China's strategic mineral policy on indium: implication for the flat screens and photovoltaic industries. Progress in Photovoltaics: Research and Applications, 2016, 24, 83-93.	4.4	27
139	Responding to China's Waste Import Ban through a New, Innovative, Cooperative Mechanism. Environmental Science & Technology, 2018, 52, 7595-7597.	4.6	27
140	Environmental optimisation of mine scheduling through life cycle assessment integration. Resources, Conservation and Recycling, 2019, 142, 267-276.	5.3	27
141	The environmental performance of fluorescent lamps in China, assessed with the LCA method. International Journal of Life Cycle Assessment, 2015, 20, 807-818.	2.2	26
142	Emerging anthropogenic circularity science: Principles, practices, and challenges. IScience, 2021, 24, 102237.	1.9	26
143	China E-waste management: Struggling for future success. Resources, Conservation and Recycling, 2018, 139, 48-49.	5.3	25
144	Forecasting the temporal stock generation and recycling potential of metals towards a sustainable future: The case of gallium in China. Science of the Total Environment, 2019, 689, 332-340.	3.9	25

#	Article	IF	CITATIONS
145	Mapping Recyclability of Industrial Waste for Anthropogenic Circularity: A Circular Economy Approach. ACS Sustainable Chemistry and Engineering, 2021, 9, 11927-11936.	3.2	25
146	Wastes could be resources and cities could be mines. Waste Management and Research, 2015, 33, 301-302.	2.2	24
147	Environmental pollution of polybrominated diphenyl ethers from industrial plants in China: a preliminary investigation. Environmental Science and Pollution Research, 2016, 23, 7012-7021.	2.7	24
148	Measuring treatment costs of typical waste electrical and electronic equipment: A pre-research for Chinese policy making. Waste Management, 2016, 57, 36-45.	3.7	24
149	An efficient extraction of lead metal from waste cathode ray tubes (CRTs) through mechano-thermal process by using carbon as a reducing agent. Journal of Cleaner Production, 2017, 148, 103-110.	4.6	24
150	Assessing resident awareness on e-waste management in Bangalore, India: a preliminary case study. Environmental Science and Pollution Research, 2018, 25, 11163-11172.	2.7	24
151	An innovative method of recycling metals in printed circuit board (PCB) using solutions from PCB production. Journal of Hazardous Materials, 2020, 390, 121892.	6.5	24
152	A study of the geographical shifts in global lead production – a possible corresponding shift in potential threats to the environment. Journal of Cleaner Production, 2015, 107, 237-251.	4.6	23
153	Resource conservation approached with an appropriate collection and upgrade-remanufacturing for used electronic products. Waste Management, 2018, 73, 78-86.	3.7	23
154	Examining the evolution of metals utilized in printed circuit boards. Environmental Technology (United Kingdom), 2017, 38, 1696-1701.	1.2	22
155	Temporally explicit life cycle assessment as an environmental performance decision making tool in rare earth project development. Minerals Engineering, 2019, 135, 64-73.	1.8	22
156	The role of China's aluminum recycling on sustainable resource and emission pathways. Resources Policy, 2022, 76, 102552.	4.2	22
157	A novel process utilizing mechanochemical sulfidization to remove lead from cathode ray tube funnel glass. Journal of the Air and Waste Management Association, 2013, 63, 418-423.	0.9	21
158	Interfacial and Mechanical Property Analysis of Waste Printed Circuit Boards Subject to Thermal Shock. Journal of the Air and Waste Management Association, 2010, 60, 229-236.	0.9	20
159	Synergism of mechanical activation and sulfurization to recover copper from waste printed circuit boards. RSC Advances, 2014, 4, 51970-51976.	1.7	20
160	Mineral processing simulation based-environmental life cycle assessment for rare earth project development: A case study on the Songwe Hill project. Journal of Environmental Management, 2019, 249, 109353.	3.8	20
161	Drivers-pressures-state-impact-response framework of hazardous waste management in China. Critical Reviews in Environmental Science and Technology, 2022, 52, 2930-2961.	6.6	20
162	Enhanced nitrogen distribution and biomethanation of kitchen waste by thermal pre-treatment. Renewable Energy, 2016, 89, 380-388.	4.3	19

#	Article	IF	CITATIONS
163	Chilling Prospect: Climate Change Effects of Mismanaged Refrigerants in China. Environmental Science & Technology, 2018, 52, 6350-6356.	4.6	19
164	In-situ enhanced catalytic reforming behavior of cobalt-based materials with inherent zero-valent aluminum in spent lithium ion batteries. Applied Catalysis B: Environmental, 2022, 303, 120920.	10.8	19
165	An Innovative Method for the Extraction of Metal from Waste Cathode Ray Tubes through a Mechanochemical Process Using 2-[Bis(carboxymethyl)amino]acetic Acid Chelating Reagent. ACS Sustainable Chemistry and Engineering, 2016, 4, 4704-4709.	3.2	18
166	Quantifying material flow of oily sludge in China and its implications. Journal of Environmental Management, 2021, 287, 112115.	3.8	18
167	Uncovering residents and restaurants' attitude and willingness toward effective food waste management: A case study of Macau. Waste Management, 2021, 130, 107-116.	3.7	18
168	Reshaping global policies for circular economy. , 2022, 1, 100003.		18
169	LCA of Scrap CRT Display at Various Scenarios of Treatment. Procedia Environmental Sciences, 2012, 16, 576-584.	1.3	17
170	Study on 1,2,3â€ŧrichlorobenzene destruction in a binary (<scp>Na,K</scp>) ₂ <scp>CO</scp> ₃ molten salt oxidation system. Environmental Progress and Sustainable Energy, 2014, 33, 65-69.	1.3	17
171	Assessing the sustainability of lead utilization in China. Journal of Environmental Management, 2016, 183, 275-279.	3.8	17
172	Characterizing the essential materials and energy performance of city buildings: A case study of Macau. Journal of Cleaner Production, 2018, 194, 263-276.	4.6	17
173	Sustainable Bioprospecting of Electronic Waste. Trends in Biotechnology, 2019, 37, 677-680.	4.9	17
174	Tracing the global tin flow network: highly concentrated production and consumption. Resources, Conservation and Recycling, 2021, 169, 105495.	5.3	17
175	Unveiling Sodium Ion Pollution in Spray-Dried Precursors and Its Implications for the Green Upcycling of Spent Lithium-Ion Batteries. Environmental Science & Technology, 2021, 55, 14897-14905.	4.6	17
176	Effects of mechanical activation on the kinetics of terbium leaching from waste phosphors using hydrochloric acid. Journal of Rare Earths, 2017, 35, 398-405.	2.5	16
177	Occurrence, levels and profiles of brominated flame retardants in daily-use consumer products on the Chinese market. Environmental Sciences: Processes and Impacts, 2019, 21, 446-455.	1.7	16
178	From Lead Paste to High-Value Nanolead Sulfide Products: A New Application of Mechanochemistry in the Recycling of Spent Lead–Acid Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 3547-3552.	3.2	16
179	The impact of China's import ban on global copper scrap flow network and the domestic copper sustainability. Resources, Conservation and Recycling, 2021, 169, 105525.	5.3	16
180	Lead recovery from scrap cathode ray tube funnel glass by hydrothermal sulphidisation. Waste Management and Research, 2015, 33, 930-936.	2.2	15

#	Article	IF	CITATIONS
181	Transfer of POP-BFRs within e-waste plastics in recycling streams in China. Science of the Total Environment, 2020, 717, 135003.	3.9	15
182	Greenhouse gas emissions from the usage of typical e-products by households: a case study of China. Climatic Change, 2015, 132, 615-629.	1.7	14
183	An overall Solution to Cathode-Ray Tube (CRT) Glass Recycling. Procedia Environmental Sciences, 2016, 31, 887-896.	1.3	14
184	Prediction of various discarded lithium batteries in China. , 2012, , .		13
185	Characterizing the transboundary movements of UEEE/WEEE: Is Macau a regional transfer center?. Journal of Cleaner Production, 2017, 157, 243-253.	4.6	13
186	A method to assess national metal criticality: the environment as a foremost measurement. Humanities and Social Sciences Communications, 2020, 7, .	1.3	13
187	Biotechnological Potential for Microplastic Waste. Trends in Biotechnology, 2020, 38, 1196-1199.	4.9	12
188	Estimation of waste outflows for multiple product types in China from 2010–2050. Scientific Data, 2021, 8, 15.	2.4	12
189	The Recycling of Comminuted Glass-Fiber-Reinforced Resin from Electronic Waste. Journal of the Air and Waste Management Association, 2010, 60, 532-539.	0.9	11
190	An evaluation on the environmental consequences of residual CFCs from obsolete household refrigerators in China. Waste Management, 2011, 31, 555-560.	3.7	11
191	Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China. Waste Management and Research, 2016, 34, 67-74.	2.2	11
192	Environmental risk related to specific processes during scrap computer recycling and disposal. Environmental Technology (United Kingdom), 2012, 33, 2547-2551.	1.2	10
193	Characterization of residue from leached cathode ray tube funnel glass: reutilization as white carbon black. Journal of Material Cycles and Waste Management, 2014, 16, 629-634.	1.6	10
194	Uncovering material flow analysis of waste cathode ray tubes television in China. Waste Management and Research, 2019, 37, 1170-1177.	2.2	10
195	Emission characteristics of PBDEs during flame-retardant plastics extruding process: field investigation and laboratorial simulation. Environmental Science and Pollution Research, 2017, 24, 22450-22457.	2.7	9
196	Well-to-wheel GHG emissions and mitigation potential from light-duty vehicles in Macau. International Journal of Life Cycle Assessment, 2018, 23, 1916-1927.	2.2	9
197	An Agenda to Move Forward E-waste Recycling and Challenges in China. , 2006, , .		8
198	Promoting environmentally sound management of polybrominated diphenyl ethers in Asia. Waste Management and Research, 2014, 32, 527-535.	2.2	8

#	Article	IF	CITATIONS
199	A Smart Cloud-Based System for the WEEE Recovery/Recycling. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2015, 137, .	1.3	8
200	Pollutants Release and Control during WEEE Recycling: A Critical Review. Procedia Environmental Sciences, 2016, 31, 867-872.	1.3	8
201	Thermal cracking of waste printed wiring boards for mechanical recycling by using residual steam preprocessing. Frontiers of Environmental Science and Engineering in China, 2011, 5, 167-174.	0.8	7
202	The geochemically-analogous process of metal recovery from second-hand resources via mechanochemistry: An atom-economic case study and its implications. Waste Management, 2016, 57, 57-63.	3.7	7
203	Comparing the costs and benefits of virgin and urban mining. Journal of Management Science and Engineering, 2022, 7, 98-106.	1.9	7
204	Recycling of PBDEs Containing Plastics from Waste Electrical and Electronic Equipment (WEEE): A Review. , 2013, , .		6
205	Mechano-microbial systems: An ecofriendly approach for copper bioleaching from waste printed circuit board. Waste Management and Research, 2019, 37, 656-661.	2.2	6
206	Composition changes, releases, and potential exposure risk of PBDEs from typical E-waste plastics. Journal of Hazardous Materials, 2022, 424, 127227.	6.5	6
207	Remediation of lead-contaminated soil by washing with choline chloride-based deep eutectic solvents. Chemical Engineering Research and Design, 2022, 160, 650-660.	2.7	6
208	Aquatic Acidification Sensitivity for Regional Environment: a Multi-Indicator Evaluation Approach. Water, Air, and Soil Pollution, 2000, 117, 251-261.	1.1	5
209	Future Solutions for the Treatment and Disposal of Hazardous Wastes in China. Environmental Management, 2002, 29, 591-597.	1.2	5
210	Adapting to new policy environment – past pattern and future trend in us-sino waste plastic trade flow. International Journal of Sustainable Development and World Ecology, 2018, 25, 703-712.	3.2	5
211	Unveiling characteristics and trend of zero waste research: a scientometric perspective. Environmental Science and Pollution Research, 2022, 29, 44391-44403.	2.7	5
212	Case study of a Suzhou pilot project on the suitable treatment technology for scrap computers in China. , 2009, , .		4
213	Controlling Transboundary Movement of Waste Electrical and Electronic Equipment by Developing International Standards. Environmental Engineering Science, 2010, 27, 3-11.	0.8	4
214	WEEE management in China. , 2019, , 521-540.		4
215	Uncovering the evolution of tin use in the United States and its implications. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	4
216	Quantifying the potential export flows of used electronic products in Macau: a case study of PCs. Environmental Science and Pollution Research, 2017, 24, 28197-28204.	2.7	3

#	Article	IF	CITATIONS
217	Recycling materials from waste electrical and electronic equipment. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	3.3	3
218	Eco-districts in France: What tools to ensure goals achievement?. Science China Earth Sciences, 2020, 63, 865-874.	2.3	3
219	A method to reuse fiber-reinforced waste from e-waste as filler for polymeric composite. , 2009, , .		2
220	Identifying the lifecycle ODP and GWP effects of the refrigerants from household air-conditioners in Macau. Environmental Impact Assessment Review, 2021, 90, 106639.	4.4	2
221	Investigation on Collection Mode of Domestic E-waste in Urban China: the Case of Beijing. Electronics and the Environment, IEEE International Symposium on, 2007, , .	0.0	1
222	The Study of the Factors Influencing Particle Size Distribution of PWB Shearing Product. Procedia Environmental Sciences, 2012, 12, 184-190.	1.3	0
223	Response to "Letter to the editor re: Awasthi et al., 2016 (Environ Sci Pollut Res 23(12): 11509–11532)― Environmental Science and Pollution Research, 2016, 23, 25512-25514.	2.7	0