
Amparo Moragues Terrades

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1350273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the Tortuosity-Connectivity of Cement-Based Porous Materials. Applied Sciences (Switzerland), 2021, 11, 5812.	2.5	1
2	Service Life and Early Age Durability Enhancement due to Combined Metakaolin and Nanosilica in Mortars for Marine Applications. Materials, 2020, 13, 1169.	2.9	9
3	Early contributing nanostructured cementitious matrix designs: Benefits in durable features at early ages. Construction and Building Materials, 2020, 241, 117941.	7.2	12
4	Behaviour of a high-performance self-compacting concrete (HPSCC) with ternary mixtures of nano- and microsilica in the presence of chlorides. Materiales De Construccion, 2020, 70, 221.	0.7	4
5	Advances in Coal Bottom Ash Use as a New Common Portland Cement Constituent. RILEM Bookseries, 2019, , 43-53.	0.4	0
6	Use of ground coal bottom ash as cement constituent in concretes exposed to chloride environments. Journal of Cleaner Production, 2018, 170, 25-33.	9.3	95
7	Ultrafine portland cement performance. Materiales De Construccion, 2018, 68, 157.	0.7	4
8	New mortars fabricated by electrostatic dry deposition of nano and microsilica additions: Enhanced properties. Construction and Building Materials, 2017, 135, 186-193.	7.2	18
9	Study of chloride penetration in concretes exposed to high-mountain weather conditions with presence of deicing salts. Construction and Building Materials, 2016, 127, 971-983.	7.2	10
10	Effect of silica fume fineness on the improvement of Portland cement strength performance. Construction and Building Materials, 2015, 96, 55-64.	7.2	91
11	Effect of nano-Si2O and nano-Al2O3 on cement mortars for use in agriculture and livestock production. Biosystems Engineering, 2014, 123, 1-11.	4.3	46
12	The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases. Thermochimica Acta, 2014, 592, 37-51.	2.7	185
13	Recent Advances in Coal Bottom Ash Use as a New Common Portland Cement Constituent. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2014, 24, 503-508.	0.8	10
14	Decalcification of cement mortars: Characterisation and modelling. Cement and Concrete Composites, 2013, 35, 136-150.	10.7	41
15	Modelling of chloride penetration into non-saturated concrete: Case study application for real marine offshore structures. Construction and Building Materials, 2013, 43, 217-224.	7.2	59
16	Characterization of bottom ashes from coal pulverized power plants to determine their potential use feasibility. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2013, 52, 296-304.	1.9	9
17	Study of the influence of microstructural parameters on the ultrasonic velocity in steel–fiber-reinforced cementitious materials. Construction and Building Materials, 2011, 25, 3066-3072.	7.2	15
18	Assessment of mortar evolution in pig slurry by mechanical and ultrasonic measurements. Construction and Building Materials, 2010, 24, 1572-1579.	7.2	5

#	Article	IF	CITATIONS
19	Measurement of the degraded depth in cementitious materials by automatic digital image processing. Measurement Science and Technology, 2010, 21, 055103.	2.6	10
20	Permeabilidad y estructura porosa de hormigones autocompactantes de resistencia moderada. Materiales De Construccion, 2010, 60, 37-51.	0.7	14
21	Effect of pig slurry on two cement mortars: Changes in strength, porosity and crystalline phases. Cement and Concrete Research, 2009, 39, 798-804.	11.0	6
22	Estudio del proceso de descalcificación en morteros degradados en NH ₄ NO ₃ empleando técnicas ultrasónicas. Materiales De Construccion, 2009, 59, 17-36.	0.7	8
23	Mechanical strength and microstructure evolution of fly ash cement mortar submerged in pig slurry. Cement and Concrete Research, 2008, 38, 717-724.	11.0	11
24	Analysis of the impact of the Arganda metro line on alternative road route emission levels. Journal of Environmental Planning and Management, 2006, 49, 475-494.	4.5	1
25	Microstructure and Mechanical Performance of Belite Cements from High Calcium Coal Fly Ash. Journal of the American Ceramic Society, 2005, 88, 1845-1853.	3.8	28
26	Belite Cement Clinker from Coal Fly Ash of High Ca Content. Optimization of Synthesis Parameters. Environmental Science & Technology, 2004, 38, 3209-3213.	10.0	70
27	Seasonal analysis of air pollution levels in Madrid. Science of the Total Environment, 1999, 235, 343-345.	8.0	5
28	Health effects associated with Madrid air pollution levels. Science of the Total Environment, 1999, 235, 395-396.	8.0	0
29	Polypropylene-fibre-reinforced mortar mixes: Optimization to control plastic shrinkage. Composites Science and Technology, 1997, 57, 655-660.	7.8	31
30	The use of a geographical information system to assess the effect of traffic pollution. Science of the Total Environment, 1996, 189-190, 267-273.	8.0	23
31	Model for predicting plastic shrinkage of polypropylene reinforced mortars. Journal of Materials Science, 1994, 29, 2821-2825.	3.7	4
32	A testing method for measuring plastic shrinkage in polypropylene fibre reinforced mortars. Materials Letters, 1994, 21, 239-246.	2.6	14
33	Equilibria of the chemical composition of the pore concrete solution Part II: Calculation of the equilibria constants of the synthetic solutions. Cement and Concrete Research, 1988, 18, 342-350.	11.0	16
34	Equilibria of the chemical composition of the concrete pore solution. Part I: Comparative study of synthetic and extracted solutions. Cement and Concrete Research, 1987, 17, 173-182.	11.0	53
35	Thermal decomposition of molybdenum(IV) dialkyldithiocarbamates: application of a new method to kinetic studies. Transition Metal Chemistry, 1987, 12, 289-291.	1.4	11
36	Thermal studies on molybdenum(IV) dialkyl dithiocarbamate adducts with pyridine. Thermochimica Acta, 1986, 108, 1-7.	2.7	10