Atsushi Hirao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1350049/publications.pdf Version: 2024-02-01

Δτουσμι Ηιρλο

#	Article	IF	CITATIONS
1	Phosphorylation of p62 Activates the Keap1-Nrf2 Pathway during Selective Autophagy. Molecular Cell, 2013, 51, 618-631.	9.7	880
2	Foxo3a Is Essential for Maintenance of the Hematopoietic Stem Cell Pool. Cell Stem Cell, 2007, 1, 101-112.	11.1	780
3	Regulation of Glycolysis by Pdk Functions as a Metabolic Checkpoint for Cell Cycle Quiescence in Hematopoietic Stem Cells. Cell Stem Cell, 2013, 12, 49-61.	11.1	659
4	PI3K-Akt-mTORC1-S6K1/2 Axis Controls Th17 Differentiation by Regulating Gfi1 Expression and Nuclear Translocation of RORÎ ³ . Cell Reports, 2012, 1, 360-373.	6.4	283
5	mTORC1 is essential for leukemia propagation but not stem cell self-renewal. Journal of Clinical Investigation, 2012, 122, 2114-2129.	8.2	117
6	Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nature Immunology, 2019, 20, 1631-1643.	14.5	107
7	Identification of tumor-initiating cells in a highly aggressive brain tumor using promoter activity of nucleostemin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17163-17168.	7.1	79
8	Cutting Edge: mTORC1 in Intestinal CD11c+CD11b+ Dendritic Cells Regulates Intestinal Homeostasis by Promoting IL-10 Production. Journal of Immunology, 2012, 188, 4736-4740.	0.8	68
9	Loss of mTOR complex 1 induces developmental blockage in early T-lymphopoiesis and eradicates T-cell acute lymphoblastic leukemia cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3805-3810.	7.1	65
10	Maintenance of genomic integrity in hematopoietic stem cells. International Journal of Hematology, 2011, 93, 434-439.	1.6	56
11	A novel splenic B1 regulatory cell subset suppresses allergic disease through phosphatidylinositol 3-kinase–Akt pathway activation. Journal of Allergy and Clinical Immunology, 2016, 138, 1170-1182.e9.	2.9	54
12	Reciprocal regulation of STING and TCR signaling by mTORC1 for T-cell activation and function. Life Science Alliance, 2019, 2, e201800282.	2.8	40
13	Identification of Stem Cells During Prepubertal Spermatogenesis via Monitoring of Nucleostemin Promoter Activity. Stem Cells, 2008, 26, 3237-3246.	3.2	35
14	Spred1 Safeguards Hematopoietic Homeostasis against Diet-Induced Systemic Stress. Cell Stem Cell, 2018, 22, 713-725.e8.	11.1	33
15	MIP-1α/CCL3-expressing basophil-lineage cells drive the leukemic hematopoiesis of chronic myeloid leukemia in mice. Blood, 2016, 127, 2607-2617.	1.4	32
16	Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance. Journal of Biological Chemistry, 2016, 291, 21496-21509.	3.4	31
17	Identification of GSK3β inhibitor kenpaullone as a temozolomide enhancer against glioblastoma. Scientific Reports, 2019, 9, 10049.	3.3	30
18	Identification of antipsychotic drug fluspirilene as a potential anti-glioma stem cell drug. Oncotarget, 2017, 8, 111728-111741.	1.8	29

Atsushi Hirao

#	Article	IF	CITATIONS
19	Novel oral transforming growth factorâ€Î² signaling inhibitor <scp>EW</scp> â€7197 eradicates <scp>CML</scp> â€initiating cells. Cancer Science, 2016, 107, 140-148.	3.9	28
20	S6 Kinase- and β-TrCP2-Dependent Degradation of p19 ^{Arf} Is Required for Cell Proliferation. Molecular and Cellular Biology, 2015, 35, 3517-3527.	2.3	25
21	Regulation of Hematopoiesis and Hematological Disease by TGF-β Family Signaling Molecules. Cold Spring Harbor Perspectives in Biology, 2017, 9, a027987.	5.5	25
22	NKX2.2 Suppresses Self-Renewal of Glioma-Initiating Cells. Cancer Research, 2011, 71, 1135-1145.	0.9	24
23	MechanisticÂ/Âmammalian target protein of rapamycin signaling in hematopoietic stem cells and leukemia. Cancer Science, 2013, 104, 977-982.	3.9	22
24	Pleiotropic roles of mTOR complexes in haemato-lymphopoiesis and leukemogenesis. Journal of Biochemistry, 2014, 156, 73-83.	1.7	21
25	Strong therapeutic potential of Î ³ -secretase inhibitor MRK003 for CD44-high and CD133-low glioblastoma initiating cells. Journal of Neuro-Oncology, 2015, 121, 239-250.	2.9	20
26	Loss of Tsc1 accelerates malignant gliomagenesis when combined with oncogenic signals. Journal of Biochemistry, 2014, 155, 227-233.	1.7	19
27	Distinct roles of Rheb and Raptor in activating mTOR complex 1 for the self-renewal of hematopoietic stem cells. Biochemical and Biophysical Research Communications, 2018, 495, 1129-1135.	2.1	17
28	Autophagy inhibition synergizes with calcium mobilization to achieve efficient therapy of malignant gliomas. Cancer Science, 2018, 109, 2497-2508.	3.9	16
29	JLP-JNK signaling protects cancer cells from reactive oxygen species-induced cell death. Biochemical and Biophysical Research Communications, 2018, 501, 724-730.	2.1	14
30	Intracellular metabolic adaptation of intraepithelial CD4+CD8αα+ T lymphocytes. IScience, 2022, 25, 104021.	4.1	14
31	Nucleostemin in Injury-Induced Liver Regeneration. Stem Cells and Development, 2012, 21, 3044-3054.	2.1	12
32	Functional dissection of hematopoietic stem cell populations with a stemness-monitoring system based on NS-GFP transgene expression. Scientific Reports, 2017, 7, 11442.	3.3	12
33	Essential role of autophagy in protecting neonatal haematopoietic stem cells from oxidative stress in a p62-independent manner. Scientific Reports, 2021, 11, 1666.	3.3	12
34	Inactivation of p38 MAPK Extends Self-Renewal Capacity of Haematopoietic Stem Cells Blood, 2005, 106, 265-265.	1.4	12
35	The GPI-anchored protein CD109 protects hematopoietic progenitor cells from undergoing erythroid differentiation induced by TGF-1². Leukemia, 2022, 36, 847-855.	7.2	9
36	Foxo3a Inhibitors of Microbial Origin, JBIR-141 and JBIR-142. Organic Letters, 2015, 17, 5476-5479.	4.6	8

Atsushi Hirao

#	Article	IF	CITATIONS
37	SMURF2 phosphorylation at Thr249 modifies glioma stemness and tumorigenicity by regulating TGF-Î ² receptor stability. Communications Biology, 2022, 5, 22.	4.4	8
38	Abundant Nucleostemin Expression Supports the Undifferentiated Properties of Germ Cell Tumors. American Journal of Pathology, 2013, 183, 592-603.	3.8	7
39	Pillar[6]arene acts as a biosensor for quantitative detection of a vitamin metabolite in crude biological samples. Communications Chemistry, 2020, 3, .	4.5	7
40	Molecular pathology of tumorâ€initiating cells: Lessons from Philadelphia chromosomeâ€positive leukemia. Pathology International, 2011, 61, 501-508.	1.3	6
41	Identification of 2-Fluoropalmitic Acid as a Potential Therapeutic Agent Against Glioblastoma. Current Pharmaceutical Design, 2020, 26, 4675-4684.	1.9	6
42	Therapeutic advantage of targeting lysosomal membrane integrity supported by lysophagy in malignant glioma. Cancer Science, 2022, 113, 2716-2726.	3.9	6
43	Expansion of senescent megakaryocyte-lineage cells maintains CML cell leukemogenesis. Blood Advances, 2020, 4, 6175-6188.	5.2	5
44	Association of a murine leukaemia stem cell gene signature based on nucleostemin promoter activity with prognosis of acute myeloid leukaemia in patients. Biochemical and Biophysical Research Communications, 2014, 450, 837-843.	2.1	4
45	RHEB is a potential therapeutic target in T cell acute lymphoblastic leukemia. Biochemical and Biophysical Research Communications, 2022, 621, 74-79.	2.1	3
46	The Role of Nutrients in Maintaining Hematopoietic Stem Cells and Healthy Hematopoiesis for Life. International Journal of Molecular Sciences, 2022, 23, 1574.	4.1	2
47	Guest editorial: Cooperative networks for stem cell homeostasis in normal and malignant hematopoiesis: from metabolism to epigenetics. International Journal of Hematology, 2016, 103, 605-606.	1.6	1
48	Olfactomedin 4 Inhibits Erythroid Differentiation of Leukemic Cell Lines Induced By TGF-β: A Model of Preferential Commitment of Del(13q) Hematopoietic Stem Cells in Immune-Mediated Bone Marrow Failure. Blood, 2019, 134, 5000-5000.	1.4	1
49	DDIS-08. DRUG REPOSITIONING TARGETING GLIOMA STEM CELLS. Neuro-Oncology, 2016, 18, vi48-vi49.	1.2	Ο
50	Anti-Oxidant NAC Prevents Hypersensitivity, Immunodeficiency and Lymphomagenesis in Atmâ^'/â^' Mice Blood, 2006, 108, 4753-4753.	1.4	0
51	Molecular Mechanism Regulating Foxo In Leukemia Initiating Cells of Chronic Myeloid Leukemia Blood, 2010, 116, 3391-3391.	1.4	Ο
52	mTORC1 Inactivation Prevents and Eradicates Acute Lymphoblastic T-Cell Leukemia. Blood, 2013, 122, 1211-1211.	1.4	0