Yuan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/134991/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	"Bottomâ€Up―Embedding of the JÃ,rgensen–Hayashi Catalyst into a Chiral Porous Polymer for Highly Efficient Heterogeneous Asymmetric Organocatalysis. Chemistry - A European Journal, 2012, 18, 6718-6723.	1.7	92
2	4â€{ <i>N</i> , <i>N</i> â€Dimethylamino)pyridineâ€Embedded Nanoporous Conjugated Polymer as a Highly Active Heterogeneous Organocatalyst. Chemistry - A European Journal, 2012, 18, 6328-6334.	1.7	67
3	Visible-Light-Induced Photocatalytic Aerobic Oxidative C _{sp3} –H Functionalization of Glycine Derivatives: Synthesis of Substituted Quinolines. Journal of Organic Chemistry, 2016, 81, 12433-12442.	1.7	65
4	Enantioselective aerobic oxidative cross-dehydrogenative coupling of glycine derivatives with ketones and aldehydes <i>via</i> cooperative photoredox catalysis and organocatalysis. Chemical Science, 2020, 11, 4741-4746.	3.7	61
5	A dual-response fluorescent probe for detection and bioimaging of hydrazine and cyanide with different fluorescence signals. Talanta, 2021, 221, 121606.	2.9	54
6	Organocatalytic asymmetric Henry reaction of isatins: Highly enantioselective synthesis of 3-hydroxy-2-oxindoles. RSC Advances, 2011, 1, 389.	1.7	50
7	A Novel, Facile Approach to Frondosin B and 5- <i>epi</i> -Liphagal <i>via</i> a New [4 + 3]-Cycloaddition. Organic Letters, 2012, 14, 4528-4530.	2.4	47
8	Insights into the Asymmetric Heterogeneous Catalysis in Porous Organic Polymers: Constructing A TADDOLâ€Embedded Chiral Catalyst for Studying the Structure–Activity Relationship [[] []] . Chemistry - A European Journal, 2014, 20, 11019-11028.	1.7	46
9	Visible light-induced aerobic oxidative cross-coupling of glycine derivatives with indoles: a facile access to 3,3′ bisindolylmethanes. Organic Chemistry Frontiers, 2018, 5, 2120-2125.	2.3	44
10	Goldâ€catalyzed Alkyne Hydroxylation: Synthesis of 2‣ubstituted Benzo[<i>b</i>]furan Compounds. Chinese Journal of Chemistry, 2008, 26, 1461-1464.	2.6	40
11	Visible Lightâ€Induced Aerobic Oxidative â^'H Arylation of Glycine Derivatives. Advanced Synthesis and Catalysis, 2018, 360, 4452-4456.	2.1	37
12	Regio―and Stereoselective [4+3] Cycloaddition Towards Fused 5,7,6â€Tricyclic Skeletons. Chemistry - an Asian Journal, 2013, 8, 546-551.	1.7	34
13	Metal-free photocatalyzed aerobic oxidative Csp3–H functionalization of glycine derivatives: one-step generation of quinoline-fused lactones. Organic and Biomolecular Chemistry, 2018, 16, 3816-3823.	1.5	33
14	Visible-Light-Induced Charge Transfer Enables C _{sp3} –H Functionalization of Glycine Derivatives: Access to 1,3-Oxazolidines. Organic Letters, 2020, 22, 1638-1643.	2.4	33
15	One pot hydroamination/[4 + 3] cycloaddition: synthesis towards the cyclohepta[b]indole core of silicine and ervatamine. RSC Advances, 2014, 4, 63850-63854.	1.7	29
16	Synthesis of 2â€Aminobenzothiazoles <i>via</i> Copper(I) atalyzed Cross oupling with Partâ€Perâ€Million Catalyst Loadings. Advanced Synthesis and Catalysis, 2011, 353, 1174-1178.	2.1	25
17	Visible Light-Induced Oxidative Cross Dehydrogenative Coupling of Glycine Esters with β-Naphthols: Access to 1,3-Benzoxazines. Journal of Organic Chemistry, 2020, 85, 6261-6270.	1.7	25
18	Visible light-induced aerobic oxidative cross-coupling of glycine esters with α-angelicalactone: a facile pathway to γ-lactams. Organic and Biomolecular Chemistry, 2018, 16, 6728-6734.	1.5	24

YUAN ZHANG

#	Article	IF	CITATIONS
19	Pyrrolidine-based chiral porous polymers for heterogeneous organocatalysis in water. Polymer Chemistry, 2019, 10, 3298-3305.	1.9	24
20	Organocatalytic Michael Addition of Nitro Esters to α,βâ€Unsaturated Aldehydes: Towards the Enantioselective Synthesis of <i>trans</i> â€3â€Substituted Proline Derivatives. Advanced Synthesis and Catalysis, 2012, 354, 2635-2640.	2.1	22
21	Visible-light-enabled aerobic oxidative C _{sp3} –H functionalization of glycine derivatives using an organic photocatalyst: access to substituted quinoline-2-carboxylates. Organic and Biomolecular Chemistry, 2020, 18, 8179-8185.	1.5	22
22	Metal-Free Difunctionalization of Alkynes with 2-Chlorodithiane for Synthesis of β-Ketodithianes. Journal of Organic Chemistry, 2015, 80, 5894-5899.	1.7	20
23	Zn(OTf) ₂ -Catalyzed Formal [3 + 3] Cascade Annulation of Propargylic Alcohols with 2-Aminochromones: Accessing the Chromeno[2,3- <i>b</i>]pyridines. Journal of Organic Chemistry, 2019, 84, 13967-13974.	1.7	20
24	Synthesis of Benzannulated [6,6]-Spiroketals by a One-Pot Carbonylative Sonogashira Coupling/Double Annulation Reaction. Organic Letters, 2019, 21, 412-416.	2.4	19
25	Gold-Catalyzed Double Intramolecular Alkyne Hydroalkoxylation: Synthesis of the Bisbenzannelated Spiroketal Core of Rubromycins. Synlett, 2008, 2008, 940-944.	1.0	18
26	Diâ€ <i>tert</i> â€Butyl Peroxideâ€Mediated Atomâ€Transfer Radical Addition of 2â€Chlorodithiane to Aryl Alkynes under Mild Conditions. Chemistry - A European Journal, 2015, 21, 14328-14331.	1.7	17
27	Detection of DNA 3'-phosphatase activity based on exonuclease III-assisted cascade recycling amplification reaction. Talanta, 2019, 204, 499-506.	2.9	17
28	A New Copper(I)-Catalyzed Cycloetherification/Acid-Catalyzed Allylic Nucleophilic Substitution for One-Pot Synthesis of 2-Substituted Benzofurans. Synlett, 2012, 23, 1043-1046.	1.0	12
29	Facile synthesis of thiochromanyl-spirooxindoles via K 2 CO 3 catalyzed tandem sulfa-Michael/Aldol reaction. Tetrahedron Letters, 2017, 58, 3401-3405.	0.7	12
30	Acid-catalyzed chemoselective C- and O- prenylation of cyclic 1,3-diketones. Chinese Journal of Catalysis, 2020, 41, 1401-1409.	6.9	12
31	Mg(ClO ₄) ₂ -promoted [4 + 3] cycloaddition of oxindole derivatives with conjugated dienes: concise synthesis of spirocycloheptane oxindole derivatives. RSC Advances, 2016, 6, 26954-26958.	1.7	11
32	Synthesis of 2-substituted 3-chlorobenzofurans <i>via</i> TMSCl-mediated nucleophilic annulation of isatin-derived propargylic alcohols. Organic and Biomolecular Chemistry, 2018, 16, 6133-6139.	1.5	10
33	A TEMPOâ€Functionalized Ordered Mesoporous Polymer as a Highly Active and Reusable Organocatalyst. Chemistry - an Asian Journal, 2021, 16, 3689-3694.	1.7	9
34	Ratiometric fluorescent detection and imaging of microRNA in living cells with manganese dioxide nanosheet-active DNAzyme. Talanta, 2021, 233, 122518.	2.9	9
35	Direct synthesis of triphenylamine-based ordered mesoporous polymers for metal-free photocatalytic aerobic oxidation. Journal of Materials Chemistry A, 2022, 10, 13978-13986.	5.2	9
36	Molecularly imprinted gelatin nanoparticles for DNA delivery and in-situ fluorescence imaging of telomerase activity. Mikrochimica Acta, 2019, 186, 610.	2.5	8

YUAN ZHANG

#	Article	IF	CITATIONS
37	A pH-targeted and NIR-responsive NaCl-nanocarrier for photothermal therapy and ion-interference therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 39, 102460.	1.7	8
38	Triphenylphosphineâ€Catalyzed Diastereoselective Addition of Oxazolones to Isatinâ€Derived Ketimines: Construction of Vicinal Nâ€Substituted Quaternary Stereocenters. Asian Journal of Organic Chemistry, 2019, 8, 492-495.	1.3	7
39	Multicomponent Syntheses to Alkene- and Alkyne-Functionalized Benzopyrans via Alkynylation and [4+2] Cyclization in One-Pot Process. Synlett, 2015, 26, 827-833.	1.0	6
40	Gelatin nanoparticles transport DNA probes for detection and imaging of telomerase and microRNA in living cells. Talanta, 2020, 218, 121100.	2.9	6
41	Facile real-time evaluation of the stability of surface charge under regular shear stress by pulsed streaming potential measurement. RSC Advances, 2015, 5, 78519-78525.	1.7	5
42	Dramatic Base-Oriented Chemoselective Tandem Wacker Cyclizations: Synthesis of Bisbenzannelated Spiroketals and 2-Substituted Chromans. Synlett, 2011, 2011, 1579-1584.	1.0	3
43	Regiodivergent radical oxidative coupling of vinyl ethers with dithiane by copper or iron catalysis. Organic Chemistry Frontiers, 2017, 4, 2134-2138.	2.3	2
44	Nanostructured Surfaces, Coatings, and Films: Fabrication, Characterization, and Application. Journal of Nanomaterials, 2013, 2013, 1-2.	1.5	1