Shutian Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/134933/publications.pdf Version: 2024-02-01

SHUTIAN TAO

#	Article	IF	CITATIONS
1	Cryptochrome-mediated blue-light signal contributes to lignin biosynthesis in stone cells in pear fruit. Plant Science, 2022, 318, 111211.	1.7	17
2	Genome-wide analysis and expression pattern of the PIN gene family during Korla fragrant pear calyx development. Acta Physiologiae Plantarum, 2022, 44, 1.	1.0	2
3	Transcriptome analysis provides new ideas for studying the regulation of glucose-induced lignin biosynthesis in pear calli. BMC Plant Biology, 2022, 22, .	1.6	2
4	Genome-wide association studies provide insights into the genetic determination of fruit traits of pear. Nature Communications, 2021, 12, 1144.	5.8	44
5	PbCSE1 promotes lignification during stone cell development in pear (Pyrus bretschneideri) fruit. Scientific Reports, 2021, 11, 9450.	1.6	10
6	CAD Genes: Genome-Wide Identification, Evolution, and Their Contribution to Lignin Biosynthesis in Pear (Pyrus bretschneideri). Plants, 2021, 10, 1444.	1.6	6
7	Analysis of PRX Gene Family and Its Function on Cell Lignification in Pears (Pyrus bretschneideri). Plants, 2021, 10, 1874.	1.6	4
8	Transcriptome provides potential insights into how calcium affects the formation of stone cell in Pyrus. BMC Genomics, 2021, 22, 831.	1.2	1
9	Candidate proteins involved in the calyx abscission process of â€~Kuerlexiangli' (Pyrus sinkiangensis Yu) identified by iTRAQ analysis. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	3
10	PbMC1a/1b regulates lignification during stone cell development in pear (Pyrus bretschneideri) fruit. Horticulture Research, 2020, 7, 59.	2.9	20
11	The β-amylase PbrBAM3 from pear (Pyrus betulaefolia) regulates soluble sugar accumulation and ROS homeostasis in response to cold stress. Plant Science, 2019, 287, 110184.	1.7	52
12	Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri). BMC Plant Biology, 2019, 19, 161.	1.6	41
13	Characterization and Quantification of Polyphenols and Triterpenoids in Thinned Young Fruits of Ten Pear Varieties by UPLC-Q TRAP-MS/MS. Molecules, 2019, 24, 159.	1.7	62
14	Transcriptomic and evolutionary analyses of white pear (Pyrus bretschneideri) β-amylase genes reveals their importance for cold and drought stress responses. Gene, 2019, 689, 102-113.	1.0	22
15	The unique evolutionary pattern of the Hydroxyproline-rich glycoproteins superfamily in Chinese white pear (Pyrus bretschneideri). BMC Plant Biology, 2018, 18, 36.	1.6	6
16	The mining and evolutionary investigation of AP2/ERF genes in pear (Pyrus). BMC Plant Biology, 2018, 18, 46.	1.6	41
17	Physiological and Nutritional Responses of Pear Seedlings to Nitrate Concentrations. Frontiers in Plant Science, 2018, 9, 1679.	1.7	33
18	Diversification and independent domestication of Asian and European pears. Genome Biology, 2018, 19, 77.	3.8	149

SHUTIAN TAO

#	Article	IF	CITATIONS
19	Calcium treatments promote the aroma volatiles emission of pear (Pyrus ussuriensis â€~Nanguoli') fruit during post-harvest ripening process. Scientia Horticulturae, 2017, 215, 102-111.	1.7	27
20	Genome-wide analysis and characterization of molecular evolution of the HCT gene family in pear (Pyrus bretschneideri). Plant Systematics and Evolution, 2017, 303, 71-90.	0.3	23
21	Transcriptome profiling reveals the candidate genes associated with aroma metabolites and emission of pear (Pyrus ussuriensis cv.). Scientia Horticulturae, 2016, 206, 33-42.	1.7	15
22	Genome-wide Annotation and Comparative Analysis of Long Terminal Repeat Retrotransposons between Pear Species of P. bretschneideri and P. Communis. Scientific Reports, 2015, 5, 17644.	1.6	16
23	Mitochondrial dysfunction mediated by cytoplasmic acidification results in pollen tube growth cessation in <i>Pyrus pyrifolia</i> . Physiologia Plantarum, 2015, 153, 603-615.	2.6	18
24	Cinnamate-4-Hydroxylase Gene Is Involved in the Step of Lignin Biosynthesis in Chinese White Pear. Journal of the American Society for Horticultural Science, 2015, 140, 573-579.	0.5	12
25	Evolution of the Aroma Volatiles of Pear Fruits Supplemented with Fatty Acid Metabolic Precursors. Molecules, 2014, 19, 20183-20196.	1.7	41
26	Longâ€chain base phosphates modulate pollen tube growth via channelâ€mediated influx of calcium. Plant Journal, 2014, 79, 507-516.	2.8	17
27	The genome of the pear (<i>Pyrus bretschneideri</i> Rehd.). Genome Research, 2013, 23, 396-408.	2.4	832
28	Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC–MS. Food Chemistry, 2012, 134, 2367-2382.	4.2	83
29	Effect of mulching systems on fruit quality and phytochemical composition of newly developed strawberry lines. Agricultural and Food Science, 2012, 21, 132-140.	0.3	10
30	Effects of Drought Stress and Rewatering on Physiological Characteristics of Pear Seedling. Ying Yong Yu Huan Jing Sheng Wu Xue Bao = Chinese Journal of Applied and Environmental Biology, 2012, 18, 218.	0.1	0
31	<i>In vitro</i> antifungal activity and mode of action of selected polyphenolic antioxidants on <i>Botrytis cinerea</i> . Archives of Phytopathology and Plant Protection, 2010, 43, 1564-1578.	0.6	30
32	Anatomy, ultrastructure and lignin distribution of stone cells in two Pyrus species. Plant Science, 2009, 176, 413-419.	1.7	138
33	PROFILE OF ANTIOXIDANT ACTIVITIES OF SELECTED STRAWBERRY GENOTYPES. Acta Horticulturae, 2009, , 551-556.	0.1	7
34	MYB1R1 and MYC2 Regulate ω-3 Fatty Acid Desaturase Involved in ABA-Mediated Suberization in the Russet Skin of a Mutant of †Dangshansuli' (Pyrus bretschneideri Rehd.). Frontiers in Plant Science, 0, 13, .	1.7	6