
Scott J. Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1349270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ring-Closing Metathesis and Related Processes in Organic Synthesis. Accounts of Chemical Research, 1995, 28, 446-452.	15.6	1,030
2	Amino acids and peptides as asymmetric organocatalysts. Tetrahedron, 2002, 58, 2481-2495.	1.9	628
3	Asymmetric Catalysis Mediated by Synthetic Peptides. Chemical Reviews, 2007, 107, 5759-5812.	47.7	593
4	Enantioselective catalysis and complexity generation from allenoates. Chemical Society Reviews, 2009, 38, 3102.	38.1	578
5	Nucleophilic Chiral Amines as Catalysts in Asymmetric Synthesis. Chemical Reviews, 2003, 103, 2985-3012.	47.7	481
6	Application of Ring-Closing Metathesis to the Synthesis of Rigidified Amino Acids and Peptides. Journal of the American Chemical Society, 1996, 118, 9606-9614.	13.7	441
7	Dynamic Kinetic Resolution of Biaryl Atropisomers via Peptide-Catalyzed Asymmetric Bromination. Science, 2010, 328, 1251-1255.	12.6	403
8	In Search of Peptide-Based Catalysts for Asymmetric Organic Synthesis. Accounts of Chemical Research, 2004, 37, 601-610.	15.6	387
9	The role of organometallic copper(iii) complexes in homogeneous catalysis. Chemical Science, 2013, 4, 2301.	7.4	344
10	Enantioselective [3 + 2]-Cycloadditions Catalyzed by a Protected, Multifunctional Phosphine-Containing α-Amino Acid. Journal of the American Chemical Society, 2007, 129, 10988-10989.	13.7	342
11	Chiral Bis(oxazoline)copper(II) Complexes as Lewis Acid Catalysts for the Enantioselective Dielsâ^Alder Reaction. Journal of the American Chemical Society, 1999, 121, 7559-7573.	13.7	338
12	The Rauhut–Currier reaction: a history and its synthetic application. Tetrahedron, 2009, 65, 4069-4084.	1.9	324
13	Iridium-Catalyzed Hydrogenation of N-Heterocyclic Compounds under Mild Conditions by an Outer-Sphere Pathway. Journal of the American Chemical Society, 2011, 133, 7547-7562.	13.7	296
14	C2-Symmetric Cationic Copper(II) Complexes as Chiral Lewis Acids: Counterion Effects in the Enantioselective Diels–Alder Reaction. Angewandte Chemie International Edition in English, 1995, 34, 798-800.	4.4	287
15	Catalytic Ring-Closing Metathesis of Dienes: Application to the Synthesis of Eight-Membered Rings. Journal of the American Chemical Society, 1995, 117, 2108-2109.	13.7	282
16	Bis(oxazoline)copper(II) complexes as chiral catalysts for the enantioselective Diels-Alder reaction. Journal of the American Chemical Society, 1993, 115, 6460-6461.	13.7	266
17	Bis(oxazoline) and Bis(oxazolinyl)pyridine Copper Complexes as Enantioselective Dielsâ~'Alder Catalysts:  Reaction Scope and Synthetic Applications. Journal of the American Chemical Society, 1999, 121, 7582-7594.	13.7	255
18	Selection of Enantioselective Acyl Transfer Catalysts from a Pooled Peptide Library through a Fluorescence-Based Activity Assay:  An Approach to Kinetic Resolution of Secondary Alcohols of Broad Structural Scope. Journal of the American Chemical Society, 2001, 123, 6496-6502.	13.7	254

#	Article	IF	CITATIONS
19	Stereospecific Cï£;H Oxidation with H ₂ O ₂ Catalyzed by a Chemically Robust Siteâ€Isolated Iron Catalyst. Angewandte Chemie - International Edition, 2009, 48, 5720-5723.	13.8	254
20	Kinetic Resolution of Alcohols Catalyzed by Tripeptides Containing theN-Alkylimidazole Substructure. Journal of the American Chemical Society, 1998, 120, 1629-1630.	13.7	242
21	Asymmetric Epoxidation with H ₂ O ₂ by Manipulating the Electronic Properties of Non-heme Iron Catalysts. Journal of the American Chemical Society, 2013, 135, 14871-14878.	13.7	216
22	A Biomimetic Approach to Asymmetric Acyl Transfer Catalysis. Journal of the American Chemical Society, 1999, 121, 11638-11643.	13.7	213
23	Site-Selective Derivatization and Remodeling of Erythromycin A by Using Simple Peptide-Based Chiral Catalysts. Angewandte Chemie - International Edition, 2006, 45, 5616-5619.	13.8	208
24	Asymmetric Azidationâ~`Cycloaddition with Open-Chain Peptide-Based Catalysts. A Sequential Enantioselective Route to Triazoles. Journal of the American Chemical Society, 2002, 124, 2134-2136.	13.7	203
25	Synthesis of Conformationally Restricted Amino Acids and Peptides Employing Olefin Metathesis. Journal of the American Chemical Society, 1995, 117, 5855-5856.	13.7	194
26	Peptide-Based Catalysts Reach the Outer Sphere through Remote Desymmetrization and Atroposelectivity. Accounts of Chemical Research, 2019, 52, 199-215.	15.6	194
27	A Chemosensor-Based Approach to Catalyst Discovery in Solution and on Solid Support. Journal of the American Chemical Society, 1999, 121, 4306-4307.	13.7	193
28	Enantioselective Rauhutâ^'Currier Reactions Promoted by Protected Cysteine. Journal of the American Chemical Society, 2007, 129, 256-257.	13.7	191
29	Discovery of a Catalytic Asymmetric Phosphorylation through Selection of a Minimal Kinase Mimic:Â A Concise Total Synthesis ofd-myo-Inositol-1-Phosphate. Journal of the American Chemical Society, 2001, 123, 10125-10126.	13.7	188
30	Pursuit of Noncovalent Interactions for Strategic Site-Selective Catalysis. Accounts of Chemical Research, 2017, 50, 609-615.	15.6	188
31	Light - driven deracemization enabled by excited - state electron transfer. Science, 2019, 366, 364-369.	12.6	188
32	Potent Noncovalent Inhibitors of the Main Protease of SARS-CoV-2 from Molecular Sculpting of the Drug Perampanel Guided by Free Energy Perturbation Calculations. ACS Central Science, 2021, 7, 467-475.	11.3	182
33	Enantioselective Synthesis of 3-Arylquinazolin-4(3 <i>H</i>)-ones via Peptide-Catalyzed Atroposelective Bromination. Journal of the American Chemical Society, 2015, 137, 12369-12377.	13.7	181
34	Thiazolylalanine-Derived Catalysts for Enantioselective Intermolecular Aldehydeâ~'Imine Cross-Couplings. Journal of the American Chemical Society, 2005, 127, 1654-1655.	13.7	174
35	Dual Catalyst Control in the Amino Acid-Peptide-Catalyzed Enantioselective Baylisâ~'Hillman Reaction. Organic Letters, 2003, 5, 3741-3743.	4.6	166
36	Applications of Nonenzymatic Catalysts to the Alteration of Natural Products. Chemical Reviews, 2017, 117, 11894-11951.	47.7	166

#	Article	IF	CITATIONS
37	Enantiodivergence in Small-Molecule Catalysis of Asymmetric Phosphorylation:  Concise Total Syntheses of the Enantiomeric d-myo-Inositol-1-phosphate and d-myo-Inositol-3-phosphate. Journal of the American Chemical Society, 2002, 124, 11653-11656.	13.7	157
38	Spontaneous transfer of chirality in an atropisomerically enriched two-axis system. Nature, 2014, 509, 71-75.	27.8	153
39	Aspartate-Catalyzed Asymmetric Epoxidation Reactions. Journal of the American Chemical Society, 2007, 129, 8710-8711.	13.7	150
40	A peptide-based catalyst approach to regioselective functionalization of carbohydrates. Tetrahedron, 2003, 59, 8869-8875.	1.9	145
41	Combinatorial evolution of site- and enantioselective catalysts for polyene epoxidation. Nature Chemistry, 2012, 4, 990-995.	13.6	144
42	Minimal Acylase-Like Peptides. Conformational Control of Absolute Stereospecificity. Journal of Organic Chemistry, 1998, 63, 6784-6785.	3.2	142
43	Total synthesis and isolation of citrinalin and cyclopiamine congeners. Nature, 2014, 509, 318-324.	27.8	140
44	Vibrational Characterization of Simple Peptides Using Cryogenic Infrared Photodissociation of H ₂ -Tagged, Mass-Selected Ions. Journal of the American Chemical Society, 2011, 133, 6440-6448.	13.7	139
45	Fluorescence-Based Screening of Asymmetric Acylation Catalysts through Parallel Enantiomer Analysis. Identification of a Catalyst for Tertiary Alcohol Resolution. Journal of Organic Chemistry, 2001, 66, 5522-5527.	3.2	135
46	Enantioselective Synthesis of Atropisomeric Benzamides through Peptide-Catalyzed Bromination. Journal of the American Chemical Society, 2013, 135, 2963-2966.	13.7	133
47	Biologically inspired non-heme iron-catalysts for asymmetric epoxidation; design principles and perspectives. Chemical Communications, 2015, 51, 14285-14298.	4.1	133
48	Pyridylalanine (Pal)-Peptide Catalyzed Enantioselective Allenoate Additions to N-Acyl Imines. Journal of the American Chemical Society, 2009, 131, 6105-6107.	13.7	130
49	Regio- and Stereoselective Synthesis of Fluoroalkenes by Directed Au(I) Catalysis. Organic Letters, 2009, 11, 4318-4321.	4.6	127
50	Determination of Noncovalent Docking by Infrared Spectroscopy of Cold Gas-Phase Complexes. Science, 2012, 335, 694-698.	12.6	127
51	Dual Catalyst Control in the Enantioselective Intramolecular Moritaâ^Baylisâ^Hillman Reaction. Organic Letters, 2005, 7, 3849-3851.	4.6	126
52	A peptide-catalyzed asymmetric Stetter reaction. Chemical Communications, 2005, , 195-197.	4.1	123
53	Enantioselective sulfonylation reactions mediated by a tetrapeptide catalyst. Nature Chemistry, 2009, 1, 630-634.	13.6	121
54	Functional Analysis of an Aspartateâ€Based Epoxidation Catalyst with Amideâ€ŧoâ€Alkene Peptidomimetic Catalyst Analogues. Angewandte Chemie - International Edition, 2008, 47, 6707-6711.	13.8	120

#	Article	IF	CITATIONS
55	Ï€ Pauli Repulsion Are Antagonistic for Protein Stability. Journal of the American Chemical Society, 2010, 132, 6651-6653.	13.7	120
56	Disparate Catalytic Scaffolds for Atroposelective Cyclodehydration. Journal of the American Chemical Society, 2019, 141, 6698-6705.	13.7	120
57	Diastereo- and Enantioselective Addition of Anilide-Functionalized Allenoates to <i>N</i> -Acylimines Catalyzed by a Pyridylalanine-Based Peptide. Journal of the American Chemical Society, 2014, 136, 3285-3292.	13.7	119
58	A Biomimetic Iron Catalyst for the Epoxidation of Olefins with Molecular Oxygen at Room Temperature. Angewandte Chemie - International Edition, 2011, 50, 1425-1429.	13.8	118
59	Chemoselective and Enantioselective Oxidation of Indoles Employing Aspartyl Peptide Catalysts. Journal of the American Chemical Society, 2011, 133, 9104-9111.	13.7	116
60	Amine-Catalyzed Coupling of Allenic Esters to α,β-Unsaturated Carbonyls. Journal of the American Chemical Society, 2003, 125, 12394-12395.	13.7	115
61	Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chemical Reviews, 2020, 120, 11479-11615.	47.7	115
62	Regioselective Oxidation of Nonactivated Alkyl C–H Groups Using Highly Structured Non-Heme Iron Catalysts. Journal of Organic Chemistry, 2013, 78, 1421-1433.	3.2	112
63	Incorporation of Peptide Isosteres into Enantioselective Peptide-Based Catalysts as Mechanistic Probes. Angewandte Chemie - International Edition, 2001, 40, 2824-2827.	13.8	104
64	A Case of Remote Asymmetric Induction in the Peptide-Catalyzed Desymmetrization of a Bis(phenol). Journal of the American Chemical Society, 2008, 130, 16358-16365.	13.7	102
65	Peptide-Catalyzed Kinetic Resolution of Formamides and Thioformamides as an Entry to Nonracemic Amines. Journal of the American Chemical Society, 2010, 132, 2870-2871.	13.7	102
66	Diversity of Secondary Structure in Catalytic Peptides with β-Turn-Biased Sequences. Journal of the American Chemical Society, 2017, 139, 492-516.	13.7	101
67	Divergent Control of Point and Axial Stereogenicity: Catalytic Enantioselective Câ^'N Bondâ€Forming Crossâ€Coupling and Catalystâ€Controlled Atroposelective Cyclodehydration. Angewandte Chemie - International Edition, 2018, 57, 6251-6255.	13.8	101
68	Bis(imine)-copper(II) complexes as chiral lewis acid catalysts for the Diels-Alder reaction. Tetrahedron Letters, 1993, 34, 7027-7030.	1.4	98
69	Catalytic Enantioselective Synthesis of Sulfinate Esters through the Dynamic Resolution of tert-Butanesulfinyl Chloride. Journal of the American Chemical Society, 2004, 126, 8134-8135.	13.7	98
70	Desymmetrization of Glycerol Derivatives with Peptide-Based Acylation Catalysts. Organic Letters, 2005, 7, 3021-3023.	4.6	96
71	Site-Selective Bromination of Vancomycin. Journal of the American Chemical Society, 2012, 134, 6120-6123.	13.7	96
72	Iron Catalyzed Highly Enantioselective Epoxidation of Cyclic Aliphatic Enones with Aqueous H ₂ O ₂ . Journal of the American Chemical Society, 2016, 138, 2732-2738.	13.7	95

#	Article	IF	CITATIONS
73	Asymmetric synthesis of the benzoquinoid ansamycin antitumor antibiotics: total synthesis of (+)-macbecin. Journal of Organic Chemistry, 1993, 58, 471-485.	3.2	91
74	Rapid phenolic O-glycosylation of small molecules and complex unprotected peptides in aqueous solvent. Nature Chemistry, 2018, 10, 644-652.	13.6	91
75	Catalytic Site-Selective Thiocarbonylations and Deoxygenations of Vancomycin Reveal Hydroxyl-Dependent Conformational Effects. Journal of the American Chemical Society, 2012, 134, 9755-9761.	13.7	88
76	Asymmetric Catalysis at a Distance: Catalytic, Site-Selective Phosphorylation of Teicoplanin. Journal of the American Chemical Society, 2013, 135, 12414-12421.	13.7	88
77	Amine-Catalyzed Addition of Azide Ion to α,β-Unsaturated Carbonyl Compounds. Organic Letters, 1999, 1, 1107-1109.	4.6	83
78	Remote Desymmetrization at Near-Nanometer Group Separation Catalyzed by a Miniaturized Enzyme Mimic. Journal of the American Chemical Society, 2006, 128, 16454-16455.	13.7	81
79	Peptide Bond Isosteres:  Ester or (E)-Alkene in the Backbone of the Collagen Triple Helix. Organic Letters, 2005, 7, 2619-2622.	4.6	80
80	Divergent Reactivity in Amine- and Phosphine-Catalyzed C–C Bond-Forming Reactions of Allenoates with 2,2,2-Trifluoroacetophenones. ACS Catalysis, 2011, 1, 1347-1350.	11.2	79
81	Synergistic Interplay of a Nonâ€Heme Iron Catalyst and Amino Acid Coligands in H ₂ O ₂ Activation for Asymmetric Epoxidation of αâ€Alkylâ€Substituted Styrenes. Angewandte Chemie - International Edition, 2015, 54, 2729-2733.	13.8	79
82	A Polymeric and Fluorescent Gel for Combinatorial Screening of Catalysts. Journal of the American Chemical Society, 2000, 122, 11270-11271.	13.7	78
83	Structure-Selectivity Relationships and Structure for a Peptide-Based Enantioselective Acylation Catalyst. Journal of the American Chemical Society, 2004, 126, 6967-6971.	13.7	78
84	Chiral Copper(II) Complex-Catalyzed Reactions of Partially Protected Carbohydrates. Organic Letters, 2013, 15, 6178-6181.	4.6	78
85	Nonenzymatic peptide-based catalytic asymmetric phosphorylation of inositol derivatives. Chemical Communications, 2003, , 1781.	4.1	75
86	Chemical Tailoring of Teicoplanin with Site-Selective Reactions. Journal of the American Chemical Society, 2013, 135, 8415-8422.	13.7	75
87	A chemoselective strategy for late-stage functionalization of complex small molecules with polypeptides and proteins. Nature Chemistry, 2019, 11, 78-85.	13.6	75
88	Development of a Cysteine-Catalyzed Enantioselective Rauhutâ^'Currier Reaction. Journal of Organic Chemistry, 2010, 75, 5784-5796.	3.2	74
89	An Approach to the Siteâ€Selective Deoxygenation of Hydroxy Groups Based on Catalytic Phosphoramidite Transfer. Angewandte Chemie - International Edition, 2012, 51, 2907-2911.	13.8	74
90	Aqueous Glycosylation of Unprotected Sucrose Employing Glycosyl Fluorides in the Presence of Calcium Ion and Trimethylamine. Journal of the American Chemical Society, 2016, 138, 3175-3182.	13.7	73

#	Article	IF	CITATIONS
91	Asymmetric phosphorylation through catalytic P(III) phosphoramidite transfer: Enantioselective synthesis of <scp>d</scp> - <i>myo</i> -inositol-6-phosphate. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20620-20624.	7.1	70
92	Selective partial reduction of quinolines: Hydrosilylation vs. transfer hydrogenation. Journal of Organometallic Chemistry, 2008, 693, 1815-1821.	1.8	67
93	A Nonenzymatic Acid/Peracid Catalytic Cycle for the Baeyerâ^'Villiger Oxidation. Organic Letters, 2008, 10, 3049-3052.	4.6	67
94	Site- and Stereoselective Chemical Editing of Thiostrepton by Rh-Catalyzed Conjugate Arylation: New Analogues and Collateral Enantioselective Synthesis of Amino Acids. Journal of the American Chemical Society, 2017, 139, 15460-15466.	13.7	67
95	Site-Selective Catalysis of Phenyl Thionoformate Transfer as a Tool for Regioselective Deoxygenation of Polyols. Journal of Organic Chemistry, 2008, 73, 1774-1782.	3.2	66
96	An Approach to the Site-Selective Diversification of Apoptolidin A with Peptide-Based Catalysts. Journal of Natural Products, 2009, 72, 1864-1869.	3.0	66
97	Studies of folded peptide-based catalysts for asymmetric organic synthesis. Biopolymers, 2006, 84, 38-47.	2.4	64
98	Structure Diversification of Vancomycin through Peptide-Catalyzed, Site-Selective Lipidation: A Catalysis-Based Approach To Combat Glycopeptide-Resistant Pathogens. Journal of Medicinal Chemistry, 2015, 58, 2367-2377.	6.4	63
99	Asymmetric synthesis of macbecin I. Journal of Organic Chemistry, 1992, 57, 1067-1069.	3.2	60
100	Amino acid-peptide-catalyzed enantioselective Morita–Baylis–Hillman reactions. Tetrahedron, 2006, 62, 11450-11459.	1.9	60
101	Asymmetric Syntheses of Phosphatidylinositol-3-Phosphates with Saturated and Unsaturated Side Chains through Catalytic Asymmetric Phosphorylation. Journal of the American Chemical Society, 2004, 126, 13182-13183.	13.7	59
102	Peptide-Catalyzed Conversion of Racemic Oxazol-5(4 <i>H</i>)-ones into Enantiomerically Enriched α-Amino Acid Derivatives. Journal of Organic Chemistry, 2014, 79, 1542-1554.	3.2	59
103	Phosphothreonine as a Catalytic Residue in Peptideâ€Mediated Asymmetric Transfer Hydrogenations of 8â€Aminoquinolines. Angewandte Chemie - International Edition, 2015, 54, 11173-11176.	13.8	59
104	Catalyst Control over Regio- and Enantioselectivity in Baeyer–Villiger Oxidations of Functionalized Ketones. Journal of the American Chemical Society, 2014, 136, 14019-14022.	13.7	58
105	Distal Stereocontrol Using Guanidinylated Peptides as Multifunctional Ligands: Desymmetrization of Diarylmethanes via Ullman Cross-Coupling. Journal of the American Chemical Society, 2016, 138, 7939-7945.	13.7	57
106	Parameterization and Analysis of Peptide-Based Catalysts for the Atroposelective Bromination of 3-Arylquinazolin-4(3 <i>H</i>)-ones. Journal of the American Chemical Society, 2018, 140, 868-871.	13.7	57
107	Synthesis of Atropisomerically Defined, Highly Substituted Biaryl Scaffolds through Catalytic Enantioselective Bromination and Regioselective Crossâ€Coupling. Angewandte Chemie - International Edition, 2011, 50, 5125-5129.	13.8	56
108	Translation of Diverse Aramid- and 1,3-Dicarbonyl-peptides by Wild Type Ribosomes <i>in Vitro</i> . ACS Central Science, 2019, 5, 1289-1294.	11.3	54

#	Article	IF	CITATIONS
109	Asymmetric Michael addition of α-nitro-ketones using catalytic peptides. Tetrahedron Letters, 2007, 48, 1993-1997.	1.4	53
110	<i>N</i> -Methylimidazole-catalyzed Synthesis of Carbamates from Hydroxamic Acids via the Lossen Rearrangement. Organic Letters, 2013, 15, 602-605.	4.6	53
111	Linear Free-Energy Relationship Analysis of a Catalytic Desymmetrization Reaction of a Diarylmethane-bis(phenol). Organic Letters, 2010, 12, 2794-2797.	4.6	52
112	Quasi-biomimetic ring contraction promoted by a cysteine-based nucleophile: Total synthesis of Sch-642305, some analogs and their putative anti-HIV activities. Chemical Science, 2011, 2, 1568.	7.4	52
113	Catalytic Dynamic Kinetic Resolutions in Tandem to Construct Two-Axis Terphenyl Atropisomers. Journal of the American Chemical Society, 2020, 142, 16461-16470.	13.7	52
114	<i>C</i> ₂ ‣ymmetrische, kationische Kupfer(<scp>II</scp>)â€Komplexe als chirale Lewis‣ären – Einfluß des Gegenions bei enantioselektiven Dielsâ€Alderâ€Reaktionen. Angewandte Chemio 1995, 107, 864-867.	2,2.0	51
115	Dihedral angle restriction within a peptide-based tertiary alcohol kinetic resolution catalyst. Tetrahedron, 2006, 62, 5254-5261.	1.9	50
116	ortho-Acidic aromatic thiols as efficient catalysts of intramolecular Morita–Baylis–Hillman and Rauhut–Currier reactions. Tetrahedron Letters, 2011, 52, 2148-2151.	1.4	50
117	A Peptide-Embedded Trifluoromethyl Ketone Catalyst for Enantioselective Epoxidation. Organic Letters, 2012, 14, 1138-1141.	4.6	50
118	Cobalt(III) atalyzed Câ^'H Amidation of Dehydroalanine for the Site‣elective Structural Diversification of Thiostrepton. Angewandte Chemie - International Edition, 2020, 59, 890-895.	13.8	49
119	Catalytic asymmetric and stereodivergent oligonucleotide synthesis. Science, 2021, 371, 702-707.	12.6	49
120	Site-Selective Reactions with Peptide-Based Catalysts. Topics in Current Chemistry, 2015, 372, 157-201.	4.0	48
121	Streamlined Synthesis of Phosphatidylinositol (PI), PI3P, PI3,5P2, and Deoxygenated Analogues as Potential Biological Probes. Journal of Organic Chemistry, 2006, 71, 4919-4928.	3.2	47
122	Chemistry and Biology of Deoxy-myo-inositol Phosphates:Â Stereospecificity of Substrate Interactions within an Archaeal and a Bacterial IMPase. Journal of the American Chemical Society, 2004, 126, 15370-15371.	13.7	46
123	Unified Total Syntheses of the Inositol Polyphosphates:Âd-I-3,5,6P3,d-I-3,4,5P3,d-I-3,4,6P3, andd-I-3,4,5,6P4via Catalytic Enantioselective and Site-Selective Phosphorylation. Journal of Organic Chemistry, 2006, 71, 6923-6931.	3.2	45
124	Peptideâ€Catalyzed Fragment Couplings that Form Axially Chiral Nonâ€ <i>C₂</i> â€Symmetric Biaryls. Angewandte Chemie - International Edition, 2020, 59, 2875-2880.	13.8	45
125	Development of a Bio-Inspired Acyl-Anion Equivalent Macrocyclization and Synthesis of a trans-Resorcylide Precursor. Journal of Organic Chemistry, 2007, 72, 5260-5269.	3.2	44
126	Structure-guided design of a perampanel-derived pharmacophore targeting the SARS-CoV-2 main protease. Structure, 2021, 29, 823-833.e5.	3.3	43

#	Article	IF	CITATIONS
127	Proton-activated fluorescence as a tool for simultaneous screening of combinatorial chemical reactions. Current Opinion in Chemical Biology, 2002, 6, 333-338.	6.1	42
128	Catalytic site-selective synthesis and evaluation of a series of erythromycin analogs. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6007-6011.	2.2	42
129	Enantioselective Intermolecular C–O Bond Formation in the Desymmetrization of Diarylmethines Employing a Guanidinylated Peptide-Based Catalyst. Journal of the American Chemical Society, 2017, 139, 18107-18114.	13.7	41
130	Enantioselective Synthesis of an Aziridinomitosane and Selective Functionalizations of a Key Intermediate. Journal of Organic Chemistry, 2003, 68, 2728-2734.	3.2	40
131	Polymer‣upported Enantioselective Bifunctional Catalysts for Nitroâ€Michael Addition of Ketones and Aldehydes. Chemistry - A European Journal, 2012, 18, 2290-2296.	3.3	40
132	Experimental Lineage and Functional Analysis of a Remotely Directed Peptide Epoxidation Catalyst. Journal of the American Chemical Society, 2014, 136, 5301-5308.	13.7	40
133	Terahertz Spectroscopy of Tetrameric Peptides. Journal of Physical Chemistry Letters, 2019, 10, 2624-2628.	4.6	39
134	Template-promoted dimerization of C-allylglycine: A convenient synthesis of (S,S)-2,7-diaminosuberic acid. Tetrahedron Letters, 1998, 39, 1689-1690.	1.4	38
135	One-Bead-One-Catalyst Approach to Aspartic Acid-Based Oxidation Catalyst Discovery. ACS Combinatorial Science, 2011, 13, 321-326.	3.8	38
136	Enantioselective Synthesis of a Mitosane Core Assisted by Diversity-Based Catalyst Discovery. Organic Letters, 2001, 3, 2879-2882.	4.6	37
137	Optimization of Triarylpyridinone Inhibitors of the Main Protease of SARS-CoV-2 to Low-Nanomolar Antiviral Potency. ACS Medicinal Chemistry Letters, 2021, 12, 1325-1332.	2.8	37
138	Disulfide-Bridged Peptides That Mediate Enantioselective Cycloadditions through Thiyl Radical Catalysis. Organic Letters, 2018, 20, 1621-1625.	4.6	36
139	Aspartyl Oxidation Catalysts That Dial In Functional Group Selectivity, along with Regio- and Stereoselectivity. ACS Central Science, 2016, 2, 733-739.	11.3	35
140	Asymmetric Syntheses of <scp>l,l</scp> <i>â€</i> and <scp>l,d</scp> <i>â€</i> Diâ€ <i>myo</i> â€inositolâ€1,1â€2â€phosphate and their Behavior as Stabilizers of Enzy Activity at Extreme Temperatures. Angewandte Chemie - International Edition, 2009, 48, 4158-4161.	m 18. 8	34
141	A Synergistic Combinatorial and Chiroptical Study of Peptide Catalysts for Asymmetric Baeyer–Villiger Oxidation. Advanced Synthesis and Catalysis, 2015, 357, 2301-2309.	4.3	34
142	Catalytic Enantioselective Pyridine <i>N</i> -Oxidation. Journal of the American Chemical Society, 2019, 141, 18624-18629.	13.7	34
143	Phosphothreonine (pThr)-Based Multifunctional Peptide Catalysis for Asymmetric Baeyer–Villiger Oxidations of Cyclobutanones. ACS Catalysis, 2019, 9, 242-252.	11.2	34
144	Catalytic Enantioselective Synthesis of Pyridyl Sulfoximines. Journal of the American Chemical Society, 2021, 143, 9230-9235.	13.7	34

#	Article	IF	CITATIONS
145	Asymmetric Acylation Reactions Catalyzed by Conformationally Biased Octapeptides. Tetrahedron, 2000, 56, 9773-9779.	1.9	33
146	Production, Analysis, and Application of Spatially Resolved Shells in Solid-Phase Polymer Spheres. Journal of the American Chemical Society, 2002, 124, 1994-2003.	13.7	33
147	The Roles of Counterion and Water in a Stereoselective Cysteine atalyzed Rauhut–Currier Reaction: A Challenge for Computational Chemistry. Chemistry - A European Journal, 2013, 19, 14245-14253.	3.3	33
148	Phosphine-Catalyzed Annulation Reactions of 2-Butynoate and α-Keto Esters: Synthesis of Cyclopentene Derivatives. ACS Catalysis, 2014, 4, 3671-3674.	11.2	33
149	Diversity-generation from an allenoate–enone coupling: syntheses of azepines and pyrimidones from common precursors. Tetrahedron, 2005, 61, 6309-6314.	1.9	31
150	Desymmetrization of Diarylmethylamido Bis(phenols) through Peptide-Catalyzed Bromination: Enantiodivergence as a Consequence of a 2 amu Alteration at an Achiral Residue within the Catalyst. Journal of Organic Chemistry, 2017, 82, 11326-11336.	3.2	31
151	A His-Pro-Aib Peptide That Exhibits an Asx-Pro-Turn-Like Structure. Organic Letters, 2000, 2, 1247-1249.	4.6	30
152	Synthesis of the Pro-Gly Dipeptide Alkene Isostere Using Olefin Cross-Metathesis. Journal of Organic Chemistry, 2002, 67, 6240-6242.	3.2	30
153	Structural studies of \hat{l}^2 -turn-containing peptide catalysts for atroposelective quinazolinone bromination. Chemical Communications, 2016, 52, 4816-4819.	4.1	30
154	A bottom up approach towards artificial oxygenases by combining iron coordination complexes and peptides. Chemical Science, 2017, 8, 3660-3667.	7.4	30
155	Molecular Dynamics Simulations of a Conformationally Mobile Peptide-Based Catalyst for Atroposelective Bromination. ACS Catalysis, 2018, 8, 9968-9979.	11.2	30
156	Insights into the Structural Specificity of the Cytotoxicity of 3-Deoxyphosphatidylinositols. Journal of the American Chemical Society, 2008, 130, 7746-7755.	13.7	29
157	Beyond grind and find. Nature Chemistry, 2009, 1, 261-263.	13.6	28
158	Function-oriented investigations of a peptide-based catalyst that mediates enantioselective allylic alcohol epoxidation Chemical Science, 2014, 5, 4504-4511.	7.4	28
159	Pyridylalanine (Pal)-Peptide Catalyzed Enantioselective Allenoate Additions to <i>N</i> -Acyl Imines Proceed via an Atypical "aza-Moritaâ^'Baylisâ^'Hillman―Mechanism. Organic Letters, 2010, 12, 4800-4803.	4.6	27
160	Divergent Control of Point and Axial Stereogenicity: Catalytic Enantioselective Câ^'N Bondâ€Forming Cross oupling and Catalyst ontrolled Atroposelective Cyclodehydration. Angewandte Chemie, 2018, 130, 6359-6363.	2.0	27
161	A β-Boronopeptide Bundle of Known Structure As a Vehicle for Polyol Recognition. Organic Letters, 2013, 15, 5048-5051.	4.6	26
162	Stereodynamic Quinone–Hydroquinone Molecules That Enantiomerize at sp ³ -Carbon via Redox-Interconversion. Journal of the American Chemical Society, 2017, 139, 15239-15244.	13.7	26

#	Article	IF	CITATIONS
163	Synergistic Interplay of a Nonâ€Heme Iron Catalyst and Amino Acid Coligands in H ₂ O ₂ Activation for Asymmetric Epoxidation of αâ€Alkylâ€Substituted Styrenes. Angewandte Chemie, 2015, 127, 2767-2771.	2.0	25
164	Synthesis of aziridinomitosenes through base-catalyzed conjugate addition. Tetrahedron, 2004, 60, 7367-7374.	1.9	24
165	X-ray Crystal Structure of Teicoplanin A ₂ -2 Bound to a Catalytic Peptide Sequence via the Carrier Protein Strategy. Journal of Organic Chemistry, 2014, 79, 8550-8556.	3.2	23
166	Dual Genetic Encoding of Acetylâ€lysine and Nonâ€deacetylatable Thioacetylâ€lysine Mediated by Flexizyme. Angewandte Chemie - International Edition, 2016, 55, 4083-4086.	13.8	23
167	Combined Lewis acid and BrĄ̃nsted acid-mediated reactivity of glycosyl trichloroacetimidate donors. Carbohydrate Research, 2013, 382, 36-42.	2.3	22
168	Site-Selective Acylation of Natural Products with BINOL-Derived Phosphoric Acids. ACS Catalysis, 2019, 9, 9794-9799.	11.2	22
169	Atroposelective Desymmetrization of Resorcinol-Bearing Quinazolinones via Cu-Catalyzed C–O Bond Formation. Organic Letters, 2022, 24, 762-766.	4.6	22
170	Improved Carbohydrate Recognition in Water with an Electrostatically Enhanced β-Peptide Bundle. Organic Letters, 2015, 17, 4718-4721.	4.6	21
171	Identification and Partial Structural Characterization of Mass Isolated Valsartan and Its Metabolite with Messenger Tagging Vibrational Spectroscopy. Journal of the American Society for Mass Spectrometry, 2017, 28, 2414-2422.	2.8	21
172	The Temperature Dependence of the Inositol Monophosphatase Km Correlates with Accumulation of Di-myo-inositol 1,1â€~-Phosphate in Archaeoglobus fulgidus. Biochemistry, 2006, 45, 3307-3314.	2.5	20
173	Catalyst-dependent syntheses of phosphatidylinositol-5-phosphate–DiC8 and its enantiomer. Tetrahedron, 2008, 64, 7015-7020.	1.9	20
174	From substituent effects to applications: enhancing the optical response of a four-component assembly for reporting ee values. Chemical Science, 2016, 7, 4085-4090.	7.4	20
175	Solution Structures and Molecular Associations of a Peptide-Based Catalyst for the Stereoselective Baeyer–Villiger Oxidation. Organic Letters, 2016, 18, 4646-4649.	4.6	19
176	Asymmetric Catalysis upon Helically Chiral Loratadine Analogues Unveils Enantiomer-Dependent Antihistamine Activity. Journal of the American Chemical Society, 2020, 142, 12690-12698.	13.7	19
177	Photolithographic Patterning of Ring-Opening Metathesis Catalysts on Silicon. Advanced Materials, 2005, 17, 39-42.	21.0	18
178	Regioselective Derivatizations of a Tribrominated Atropisomeric Benzamide Scaffold. Organic Letters, 2015, 17, 580-583.	4.6	18
179	Green Chemistry: A Framework for a Sustainable Future. Organic Process Research and Development, 2021, 25, 1455-1459.	2.7	18
180	Tunable and Cooperative Catalysis for Enantioselective Pictetâ€Spengler Reaction with Varied Nitrogenâ€Containing Heterocyclic Carboxaldehydes. Angewandte Chemie - International Edition, 2021, 60, 24573-24581.	13.8	18

#	Article	IF	CITATIONS
181	Kinetic Analysis of a Cysteine-Derived Thiyl-Catalyzed Asymmetric Vinylcyclopropane Cycloaddition Reflects Numerous Attractive Noncovalent Interactions. Journal of the American Chemical Society, 2021, 143, 16173-16183.	13.7	17
182	Murine teratology and pharmacokinetics of the enantiomers of sodium 2-ethylhexanoate. Toxicology and Applied Pharmacology, 1992, 112, 257-265.	2.8	16
183	Diastereoselective Enolsilane Coupling Reactions. Journal of Organic Chemistry, 1997, 62, 5680-5681.	3.2	16
184	Disparate Behavior of Carbonyl and Thiocarbonyl Compounds: Acyl Chlorides vs Thiocarbonyl Chlorides and Isocyanates vs Isothiocyanates. Journal of Organic Chemistry, 2009, 74, 3659-3664.	3.2	16
185	Troponoid Atropisomerism: Studies on the Configurational Stability of Tropone-Amide Chiral Axes. Organic Letters, 2019, 21, 2412-2415.	4.6	15
186	A Fully Synthetic and Biochemically Validated Phosphatidyl Inositol-3-Phosphate Hapten via Asymmetric Synthesis and Native Chemical Ligation. Journal of the American Chemical Society, 2014, 136, 412-418.	13.7	14
187	Reengineering a Reversible Covalent-Bonding Assembly to Optically Detect ee in β-Chiral Primary Alcohols. CheM, 2019, 5, 3196-3206.	11.7	14
188	Divergent Stereoselectivity in Phosphothreonine (pThr)-Catalyzed Reductive Aminations of 3-Amidocyclohexanones. Journal of Organic Chemistry, 2018, 83, 4491-4504.	3.2	13
189	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	8.0	13
190	Synthesis and evaluation of phenylalanine-derived trifluoromethyl ketones for peptide-based oxidation catalysis. Bioorganic and Medicinal Chemistry, 2016, 24, 4871-4874.	3.0	12
191	Green Chemistry: A Framework for a Sustainable Future. Environmental Science & Technology, 2021, 55, 8459-8463.	10.0	12
192	Encouraging Submission of FAIR Data at <i>The Journal of Organic Chemistry</i> and <i>Organic Letters, 2020, 22, 1231-1232.</i>	4.6	12
193	Chemoenzymatic Synthesis of Each Enantiomer of Orthogonally Protected 4,4-Difluoroglutamic Acid: A Candidate Monomer for Chiral BrÃ,nsted Acid Peptide-Based Catalysts. Journal of Organic Chemistry, 2011, 76, 9785-9791.	3.2	11
194	An efficient chemical synthesis of carboxylate-isostere analogs of daptomycin. Organic and Biomolecular Chemistry, 2013, 11, 4680.	2.8	11
195	Multivalency as a Key Factor for High Activity of Selective Supported Organocatalysts for the Baylis–Hillman Reaction. Chemistry - A European Journal, 2015, 21, 1191-1197.	3.3	11
196	Structure and Reactivity of Highly Twisted <i>N</i> -Acylimidazoles. Organic Letters, 2019, 21, 2346-2351.	4.6	11
197	Isolating Conformers to Assess Dynamics of Peptidic Catalysts Using Computationally Designed Macrocyclic Peptides. ACS Catalysis, 2021, 11, 4395-4400.	11.2	11
198	A stepwise dechlorination/cross-coupling strategy to diversify the vancomycin â€~in-chloride'. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1025-1028.	2.2	10

#	Article	IF	CITATIONS
199	Peptideâ€Catalyzed Fragment Couplings that Form Axially Chiral Non―C 2 â€Symmetric Biaryls. Angewandte Chemie, 2020, 132, 2897-2902.	2.0	10
200	Catalytic Sulfamoylation of Alcohols with Activated Aryl Sulfamates. Organic Letters, 2020, 22, 168-174.	4.6	10
201	Catalysis-Enabled Access to Cryptic Geldanamycin Oxides. ACS Central Science, 2020, 6, 426-435.	11.3	10
202	A Stereodynamic Redoxâ€Interconversion Network of Vicinal Tertiary and Quaternary Carbon Stereocenters in Hydroquinone–Quinone Hybrid Dihydrobenzofurans. Angewandte Chemie - International Edition, 2018, 57, 15107-15111.	13.8	9
203	Palladium-Catalyzed Suzuki–Miyaura Reactions of Aspartic Acid Derived Phenyl Esters. Organic Letters, 2019, 21, 5762-5766.	4.6	9
204	Chirality-matched catalyst-controlled macrocyclization reactions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
205	Encouraging Submission of FAIR Data at <i>The Journal of Organic Chemistry</i> and <i>Organic Letters</i> . Journal of Organic Chemistry, 2020, 85, 1773-1774.	3.2	9
206	Triumph of a chemical underdog. Nature, 2008, 452, 415-416.	27.8	8
207	DNA as a template for reaction discovery. Nature Biotechnology, 2004, 22, 1378-1379.	17.5	7
208	Outer-Sphere Control for Divergent Multicatalysis with Common Catalytic Moieties. Journal of Organic Chemistry, 2019, 84, 1664-1672.	3.2	7
209	Application of High-Throughput Competition Experiments in the Development of Aspartate-Directed Site-Selective Modification of Tyrosine Residues in Peptides. Journal of Organic Chemistry, 2020, 85, 9424-9433.	3.2	7
210	Green Chemistry: A Framework for a Sustainable Future. Environmental Science and Technology Letters, 2021, 8, 487-491.	8.7	7
211	Green Chemistry: A Framework for a Sustainable Future. ACS Omega, 2021, 6, 16254-16258.	3.5	7
212	Correlating sterics in catalysis. Nature Chemistry, 2012, 4, 344-345.	13.6	6
213	Green Chemistry: A Framework for a Sustainable Future. Organic Letters, 2021, 23, 4935-4939.	4.6	6
214	"Tunable and Cooperative Catalysis for Enantioselective Pictetâ€Spengler Reaction with Varied Nitrogenâ€Containing Heterocyclic Carboxaldehydes". Angewandte Chemie, 2021, 133, 24778.	2.0	6
215	Incorporation of Peptide Isosteres into Enantioselective Peptide-Based Catalysts as Mechanistic Probes This research is supported by the U.S. National Science Foundation (CHE-9874963). We are also grateful to the U.S. NIH (GM-57595), DuPont, Eli Lilly, Glaxo–Wellcome, and Merck for research support. S.J.M. is a Fellow of the Alfred P. Sloan Foundation, a Cottrell Scholar of Research Corporation, and a	13.8	6
216	Camile Dreyfus reacher Scholar, Angewandte Chemie Anternational Edition, 2001, 40, 2824. Photocatalytic Reductive Olefin Hydrodifluoroalkylation Enabled by Tertiary Amine Reductants Compatible with Complex Systems. Journal of Organic Chemistry, 2022, 87, 10250-10255.	3.2	6

#	Article	IF	CITATIONS
217	Total Chemical Synthesis Peers into the Biosynthetic Black Box. Science, 2009, 324, 186-187.	12.6	5
218	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
219	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
220	Cobalt(III) atalyzed Câ^'H Amidation of Dehydroalanine for the Site‧elective Structural Diversification of Thiostrepton. Angewandte Chemie, 2020, 132, 900-905.	2.0	5
221	Acyl Sulfonamide Catalysts for Glycosylation Reactions with Trichloroacetimidate Donors. Synlett, 2003, 2003, 1923-1926.	1.8	4
222	d -3-Deoxy-dioctanoylphosphatidylinositol induces cytotoxicity in human MCF-7 breast cancer cells via a mechanism that involves downregulation of the D-type cyclin-retinoblastoma pathway. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1808-1815.	2.4	4
223	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
224	Green Chemistry: A Framework for a Sustainable Future. Organometallics, 2021, 40, 1801-1805.	2.3	4
225	Green Chemistry: A Framework for a Sustainable Future. Journal of Organic Chemistry, 2021, 86, 8551-8555.	3.2	4
226	Climbing Jacob's ladder. Science, 2015, 347, 829-829.	12.6	3
227	A Stereodynamic Redoxâ€Interconversion Network of Vicinal Tertiary and Quaternary Carbon Stereocenters in Hydroquinone–Quinone Hybrid Dihydrobenzofurans. Angewandte Chemie, 2018, 130, 15327-15331.	2.0	3
228	Siteâ€Selective Nitrene Transfer to Conjugated Olefins Directed by Oxazoline Peptide Ligands. Advanced Synthesis and Catalysis, 2020, 362, 289-294.	4.3	3
229	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
230	Green Chemistry: A Framework for a Sustainable Future. Industrial & Engineering Chemistry Research, 2021, 60, 8964-8968.	3.7	3
231	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
232	Actions at <i>J. Org. Chem.</i> , <i>Org. Lett.</i> , and <i>Organometallics</i> to Combat Discrimination and Bias. Journal of Organic Chemistry, 2020, 85, 10285-10286.	3.2	2
233	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
234	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2

#	Article	IF	CITATIONS
235	Green Chemistry: A Framework for a Sustainable Future. ACS Sustainable Chemistry and Engineering, 2021, 9, 8336-8340.	6.7	2
236	Enantioselective Synthesis of β-Amino Acids via Conjugate Addition to α,β-Unsaturated Carbonyl Compounds. , 2005, , 351-376.		1
237	Identifying Peptide Structures with THz Spectroscopy. , 2018, , .		1
238	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry. Inorganic Chemistry, 2018, 57, 11299-11305.	4.0	1
239	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry. Organometallics, 2018, 37, 2825-2831.	2.3	1
240	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
241	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
242	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
243	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
244	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
245	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
246	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
247	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
248	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
249	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
250	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
251	From Russia, With Chemistry. Organometallics, 2020, 39, 375-377.	2.3	1
252	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1

#	Article	IF	CITATIONS
253	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
254	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
255	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
256	Nucleophilic Chiral Amines as Catalysts in Asymmetric Synthesis. ChemInform, 2003, 34, no.	0.0	0
257	Dual Catalyst Control in the Amino Acid—Peptide Catalyzed Enantioselective Baylis—Hillman Reaction ChemInform, 2004, 35, no.	0.0	0
258	Amine-Catalyzed Coupling of Allenic Esters to $\hat{I}\pm,\hat{I}^2$ -Unsaturated Carbonyls ChemInform, 2004, 35, no.	0.0	0
259	In Search of Peptide-Based Catalysts for Asymmetric Organic Synthesis. ChemInform, 2004, 35, no.	0.0	0
260	A Peptide-Catalyzed Asymmetric Stetter Reaction ChemInform, 2005, 36, no.	0.0	0
261	Thiazolylalanine-Derived Catalysts for Enantioselective Intermolecular Aldehyde—Imine Cross-Couplings ChemInform, 2005, 36, no.	0.0	0
262	Diversity-Generation from an Allenoate—Enone Coupling: Syntheses of Azepines and Pyrimidones from Common Precursors ChemInform, 2005, 36, no.	0.0	0
263	Dual Catalyst Control in the Enantioselective Intramolecular Morita—Baylis—Hillman Reaction ChemInform, 2006, 37, no.	0.0	0
264	Editorial for The Journal of Organic Chemistry. Journal of Organic Chemistry, 2017, 82, 1-3.	3.2	0
265	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry. Journal of Organic Chemistry, 2018, 83, 9573-9579.	3.2	0
266	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry. Organic Letters, 2018, 20, 5075-5081.	4.6	0
267	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
268	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
269	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
270	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0

#	Article	IF	CITATIONS
271	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
272	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
273	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
274	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
275	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
276	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
277	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
278	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0
279	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
280	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
281	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
282	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
283	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
284	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
285	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
286	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
287	Actions at <i>J. Org. Chem.</i> , <i>Org. Lett.</i> and <i>Organometallics</i> to Combat Discrimination and Bias. Organometallics, 2020, 39, 2929-2930.	2.3	0
288	Actions at <i>J. Org. Chem.</i> , <i>Org. Lett.</i> , and <i>Organometallics</i> to Combat Discrimination and Bias. Organic Letters, 2020, 22, 6221-6222.	4.6	0

#	Article	IF	CITATIONS
289	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	Ο
290	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
291	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
292	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
293	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	0
294	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
295	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
296	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
297	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
298	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
299	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
300	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
301	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
302	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
303	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
304	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
305	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
306	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0

#	Article	IF	CITATIONS
307	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
308	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
309	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	Ο
310	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
311	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0
312	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
313	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
314	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
315	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0
316	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
317	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	Ο
318	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
319	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
320	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
321	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
322	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
323	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	Ο
324	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0

#	Article	IF	CITATIONS
325	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
326	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
327	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
328	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
329	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	Ο
330	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
331	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	Ο
332	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
333	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
334	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
335	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
336	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
337	From Russia, With Chemistry. Organic Letters, 2020, 22, 765-767.	4.6	0
338	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
339	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
340	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
341	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
342	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0

#	Article	IF	CITATIONS
343	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
344	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
345	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	Ο
346	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
347	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
348	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
349	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
350	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
351	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
352	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
353	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	Ο
354	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
355	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	Ο
356	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
357	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	Ο
358	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
359	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
360	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0

#	Article	IF	CITATIONS
361	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	ο
362	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
363	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	Ο
364	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
365	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	Ο
366	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
367	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
368	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
369	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	Ο
370	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
371	The Journal of Organic Chemistry: 85 Years in the Books. Journal of Organic Chemistry, 2020, 85, 15767-15769.	3.2	0
372	From Russia, With Chemistry. Journal of Organic Chemistry, 2020, 85, 1325-1327.	3.2	0