

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1349145/publications.pdf Version: 2024-02-01

		394421	377865
42	1,241	19	34
papers	citations	h-index	g-index
42 all docs	42 docs citations	42 times ranked	2316 citing authors

XI FANC

#	Article	IF	CITATIONS
1	The perinuclear region concentrates disordered proteins with predicted phase separation distributed in a 3D network of cytoskeletal filaments and organelles. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119161.	4.1	11
2	Subcellular Remodeling in Filamin C Deficient Mouse Hearts Impairs Myocyte Tension Development during Progression of Dilated Cardiomyopathy. International Journal of Molecular Sciences, 2022, 23, 871.	4.1	8
3	IP3R-mediated Ca2+ signaling controls B cell proliferation through metabolic reprogramming. IScience, 2022, 25, 104209.	4.1	1
4	Barth Syndrome Cardiomyopathy: An Update. Genes, 2022, 13, 656.	2.4	10
5	Atypical protein kinase C is essential for embryonic vascular development in mice. Genesis, 2021, 59, e23412.	1.6	2
6	Histone Lysine Methyltransferase SETD2 Regulates Coronary Vascular Development in Embryonic Mouse Hearts. Frontiers in Cell and Developmental Biology, 2021, 9, 651655.	3.7	8
7	Mitochondrial Chaperones and Proteases in Cardiomyocytes and Heart Failure. Frontiers in Molecular Biosciences, 2021, 8, 630332.	3.5	5
8	Cardiolipin Remodeling Defects Impair Mitochondrial Architecture and Function in a Murine Model of Barth Syndrome Cardiomyopathy. Circulation: Heart Failure, 2021, 14, e008289.	3.9	17
9	PTPMT1 Is Required for Embryonic Cardiac Cardiolipin Biosynthesis to Regulate Mitochondrial Morphogenesis and Heart Development. Circulation, 2021, 144, 403-406.	1.6	12
10	Mediator complex proximal Tail subunit MED30 is critical for Mediator core stability and cardiomyocyte transcriptional network. PLoS Genetics, 2021, 17, e1009785.	3.5	4
11	Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure. Cell Death and Differentiation, 2020, 27, 587-600.	11.2	64
12	Heat Shock Protein 60 in Cardiovascular Physiology and Diseases. Frontiers in Molecular Biosciences, 2020, 7, 73.	3.5	24
13	Loss of Filamin C Is Catastrophic for Heart Function. Circulation, 2020, 141, 869-871.	1.6	37
14	Inositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability. PLoS Genetics, 2020, 16, e1008739.	3.5	15
15	Homozygous G650del nexilin variant causes cardiomyopathy in mice. JCI Insight, 2020, 5, .	5.0	7
16	Heat shock protein 60 regulates yolk sac erythropoiesis in mice. Cell Death and Disease, 2019, 10, 766.	6.3	16
17	Nexilin Is a New Component of Junctional Membrane Complexes Required for Cardiac T-Tubule Formation. Circulation, 2019, 140, 55-66.	1.6	41
18	Inositol 1,4,5â€Trisphosphate Receptors in Endothelial Cells Play an Essential Role in Vasodilation and Blood Pressure Regulation. Journal of the American Heart Association, 2019, 8, e011704.	3.7	28

Xi Fang

#	Article	IF	CITATIONS
19	Deletion of IP3R1 by Pdgfrb-Cre in mice results in intestinal pseudo-obstruction and lethality. Journal of Gastroenterology, 2019, 54, 407-418.	5.1	11
20	P209L mutation in <i>Bag3</i> does not cause cardiomyopathy in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H392-H399.	3.2	18
21	The BAG3-dependent and -independent roles of cardiac small heat shock proteins. JCI Insight, 2019, 4, .	5.0	19
22	Luma is not essential for murine cardiac development and function. Cardiovascular Research, 2018, 114, 378-388.	3.8	35
23	Generation and Analysis of Striated Muscle Selective LINC Complex Protein Mutant Mice. Methods in Molecular Biology, 2018, 1840, 251-281.	0.9	2
24	Ushering in the cardiac role of Ubiquilin1. Journal of Clinical Investigation, 2018, 128, 5195-5197.	8.2	5
25	Loss of IP3 Receptor–Mediated Ca2+ Release in Mouse B Cells Results in Abnormal B Cell Development and Function. Journal of Immunology, 2017, 199, 570-580.	0.8	30
26	Nesprin 1α2 is essential for mouse postnatal viability and nuclear positioning in skeletal muscle. Journal of Cell Biology, 2017, 216, 1915-1924.	5.2	59
27	HSPB7 is indispensable for heart development by modulating actin filament assembly. Proceedings of the United States of America, 2017, 114, 11956-11961.	7.1	51
28	Loss-of-function mutations in co-chaperone BAG3 destabilize small HSPs and cause cardiomyopathy. Journal of Clinical Investigation, 2017, 127, 3189-3200.	8.2	107
29	IP3 receptors regulate vascular smooth muscle contractility and hypertension. JCI Insight, 2016, 1, e89402.	5.0	52
30	The TORC1-activated Proteins, p70S6K and GRB10, Regulate IL-4 Signaling and M2 Macrophage Polarization by Modulating Phosphorylation of Insulin Receptor Substrate-2. Journal of Biological Chemistry, 2016, 291, 24922-24930.	3.4	27
31	Adipocyte-specific loss of PPARÎ ³ attenuates cardiac hypertrophy. JCI Insight, 2016, 1, e89908.	5.0	65
32	Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer. Angiogenesis, 2015, 18, 373-382.	7.2	145
33	Activation of <scp>PPAR</scp> â€Î´ induces micro <scp>RNA</scp> â€100 and decreases the uptake of very lowâ€density lipoprotein in endothelial cells. British Journal of Pharmacology, 2015, 172, 3728-3736.	5.4	18
34	Cypher and Enigma Homolog Protein Are Essential for Cardiac Development and Embryonic Survival. Journal of the American Heart Association, 2015, 4, .	3.7	15
35	Normalization of Naxos plakoglobin levels restores cardiac function in mice. Journal of Clinical Investigation, 2015, 125, 1708-1712.	8.2	39
36	Loss of IP3R-dependent Ca2+ signalling in thymocytes leads to aberrant development and acute lymphoblastic leukemia. Nature Communications, 2014, 5, 4814.	12.8	51

Xi Fang

#	Article	IF	CITATIONS
37	Epigallocatechin-3-O-Gallate, a Green Tea Polyphenol, Induces Expression of Pim-1 Kinase Via PPARγ in Human Vascular Endothelial Cells. Cardiovascular Toxicology, 2013, 13, 391-395.	2.7	14
38	Response to Overexpression of 5-Hydroxytryptamine 2B Receptor Gene in Pulmonary Hypertension: Still a Long Way to Understand its Transcriptional Regulation. Hypertension, 2013, 61, e30.	2.7	1
39	Shear stress activation of nuclear receptor PXR in endothelial detoxification. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13174-13179.	7.1	47
40	Pleiotropic Effects of Peroxisome Proliferator-Activated Receptor \hat{I}^3 and \hat{I}' in Vascular Diseases. Circulation Journal, 2013, 77, 2664-2671.	1.6	15
41	Peroxisome Proliferator-Activated Receptor-Î ³ Ameliorates Pulmonary Arterial Hypertension by Inhibiting 5-Hydroxytryptamine 2B Receptor. Hypertension, 2012, 60, 1471-1478.	2.7	43
42	Role of Peroxisome Proliferator-Activated ReceptorGAMMA. in Atherosclerosis - An Update Circulation Journal, 2011, 75, 528-535.	1.6	62