
Anjie Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1349059/publications.pdf Version: 2024-02-01

ANUE WANC

#	Article	IF	CITATIONS
1	Highly selective hydrogenative ring-rearrangement of furfural to cyclopentanone over a bifunctional Ni3P/l³-Al2O3 catalyst. Molecular Catalysis, 2022, 522, 112239.	2.0	5
2	A highly dispersed Ni3P/HZSM-5 catalyst for hydrodeoxygenation of phenolic compounds to cycloalkanes. Journal of Catalysis, 2022, 410, 294-306.	6.2	11
3	Fabrication of a Monolith Reactor in a Copper Tube by Polymerization of Acetylene for Flow Catalysis. Industrial & Engineering Chemistry Research, 2022, 61, 7852-7861.	3.7	1
4	Hydrodeoxygenation of Guaiacol to Aromatic Hydrocarbons over Mo2C Prepared in Nonthermal Plasma. Plasma Chemistry and Plasma Processing, 2022, 42, 1069-1083.	2.4	5
5	Kinetic investigation of phenol hydrodeoxygenation over unsupported nickel phosphides. Catalysis Today, 2021, 371, 179-188.	4.4	14
6	Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk CoP and Co2P catalysts with stoichiometric P/Co ratios. Journal of Catalysis, 2021, 394, 167-180.	6.2	23
7	Aqueous phase hydrogenation of furfural to tetrahydrofurfuryl alcohol over Pd/UiO-66. Catalysis Communications, 2021, 148, 106178.	3.3	37
8	Copper-Based Catalysts for Selective Hydrogenation of Acetylene Derived from Cu(OH) ₂ . ACS Omega, 2021, 6, 3363-3371.	3.5	13
9	Mechanistic studies and kinetics of the desulfurization of 2-phenylcyclohexanethiol over sulfided Mo, Ni-Mo, and Co-Mo on γ-Al2O3. Journal of Catalysis, 2021, 403, 43-55.	6.2	7
10	Highâ€Performance Catalysts Derived from Cupric Subcarbonate for Selective Hydrogenation of Acetylene in an Ethylene Stream. European Journal of Inorganic Chemistry, 2021, 2021, 997-1004.	2.0	8
11	Controlled pyrolysis of ionically self-assembled metalloporphyrins on carbon as cathodic electrocatalysts of polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2021, 46, 11041-11050.	7.1	4
12	A bifunctional Ni3P/γ-Al2O3 catalyst prepared by electroless plating for the hydrodeoxygenation of phenol. Journal of Catalysis, 2021, 396, 324-332.	6.2	24
13	Controllable Synthesis of Metallic Ni3P–Ni Spheres on Graphitic Carbon Nitride Nanosheets to Promote Photocatalytic Hydrogen Generation. Topics in Catalysis, 2021, 64, 521-531.	2.8	4
14	Synthesis of Co-Doped Tungsten Phosphide Nanoparticles Supported on Carbon Supports as High-Efficiency HER Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 12311-12322.	6.7	26
15	Hydrogenative Ring-Rearrangement of Furfural to Cyclopentanone over Pd/UiO-66-NO2 with Tunable Missing-Linker Defects. Molecules, 2021, 26, 5736.	3.8	10
16	Catalytic dehydration of glycerol to acrolein over unsupported MoP. Catalysis Today, 2021, 379, 132-140.	4.4	21
17	Reprint of: A bifunctional Ni3P/ \hat{I}^3 -Al2O3 catalyst prepared by electroless plating for the hydrodeoxygenation of phenol. Journal of Catalysis, 2021, 403, 194-202.	6.2	3
18	Citric acid modified Ni ₃ P as a catalyst for aqueous phase reforming and hydrogenolysis of glycerol to 1,2-PDO. New Journal of Chemistry, 2021, 45, 21725-21731.	2.8	2

#	Article	IF	CITATIONS
19	Effect of Promoter Nature on Synthesis Gas Conversion to Alcohols over (K)MeMoS ₂ /Al ₂ O ₃ Catalysts. ChemCatChem, 2020, 12, 1443-1452.	3.7	12
20	Preparation of Ni2P Supported on Al2O3 and B2O3ÂMixed Oxides by Temperature-Programmed Reduction of Phosphate Precursors with Low P/Ni Ratios. Topics in Catalysis, 2020, 63, 1379-1387.	2.8	6
21	Preparation of an Unsupported Copper-Based Catalyst for Selective Hydrogenation of Acetylene from Cu ₂ O Nanocubes. ACS Applied Materials & Interfaces, 2020, 12, 46027-46036.	8.0	19
22	Catalytic Transfer Hydrogenation of Levulinic Acid to γ-Valerolactone over Ni ₃ P-CePO ₄ Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 7416-7425.	3.7	45
23	Transition Metal Oxodiperoxo Complex Modified Metal-Organic Frameworks as Catalysts for the Selective Oxidation of Cyclohexane. Materials, 2020, 13, 829.	2.9	11
24	Desulfurization of 2-phenylcyclohexanethiol over transition-metal phosphides. Journal of Catalysis, 2020, 383, 331-342.	6.2	15
25	Construction of 2D/2D BiVO4/g-C3N4 nanosheet heterostructures with improved photocatalytic activity. Journal of Colloid and Interface Science, 2019, 533, 251-258.	9.4	121
26	Hydrodeoxygenation of phenolic compounds to cycloalkanes over supported nickel phosphides. Catalysis Today, 2019, 319, 48-56.	4.4	47
27	Interwoven Molecular Chains Obtained by Ionic Self-Assembly of Two Iron(III) Porphyrins with Opposite and Mismatched Charges. ACS Applied Materials & Interfaces, 2019, 11, 34203-34211.	8.0	11
28	Insight into iron group transition metal phosphides (Fe2P, Co2P, Ni2P) for improving photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2019, 246, 330-336.	20.2	133
29	Pyrolysis of Self-Assembled Iron(III) Porphyrin on Carbon toward Efficient Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2019, 166, F441-F447.	2.9	10
30	Efficient Visibleâ€Lightâ€Driven Hydrogen Generation on gâ€C 3 N 4 Coupled with Iron Phosphide. ChemPhotoChem, 2019, 3, 540-544.	3.0	8
31	Cr–doped ZnS semiconductor catalyst with high catalytic activity for hydrogen production from hydrogen sulfide in non-thermal plasma. Catalysis Today, 2019, 337, 83-89.	4.4	30
32	Catalytic oxidative desulfurization of model and real diesel over a molybdenum anchored metal-organic framework. Microporous and Mesoporous Materials, 2019, 277, 245-252.	4.4	46
33	Costâ€Effective Palladiumâ€Doped Cu Bimetallic Materials to Tune Selectivity and Activity by using Doped Atom Ensembles as Active Sites for Efficient Removal of Acetylene from Ethylene. ChemCatChem, 2018, 10, 2424-2432.	3.7	27
34	Ni ₃ P as a high-performance catalytic phase for the hydrodeoxygenation of phenolic compounds. Green Chemistry, 2018, 20, 609-619.	9.0	86
35	Hydrodenitrogenation of Quinoline and Decahydroquinoline Over a Surface Nickel Phosphosulfide Phase. Catalysis Letters, 2018, 148, 1579-1588.	2.6	17
36	Aqueous Phase Hydrodeoxygenation of Phenol over Ni ₃ P-CePO ₄ Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 10216-10225.	3.7	36

#	Article	IF	CITATIONS
37	Cost-effective promoter-doped Cu-based bimetallic catalysts for the selective hydrogenation of C ₂ H ₂ to C ₂ H ₄ : the effect of the promoter on selectivity and activity. Physical Chemistry Chemical Physics, 2018, 20, 17487-17496.	2.8	37
38	Disproportionation of hypophosphite and phosphite. Dalton Transactions, 2017, 46, 6366-6378.	3.3	39
39	Plasma Synthesis of Ni2P from Mixtures of NiCl2 and Hypophosphites. Topics in Catalysis, 2017, 60, 987-996.	2.8	4
40	Phase Effect of Ni _{<i>x</i>} P _{<i>y</i>} Hybridized with g-C ₃ N ₄ for Photocatalytic Hydrogen Generation. ACS Applied Materials & Interfaces, 2017, 9, 30583-30590.	8.0	116
41	XPS study of a bulk WP hydrodesulfurization catalyst. Journal of Catalysis, 2017, 352, 557-561.	6.2	16
42	Insight into the Effects of Cu Component and the Promoter on the Selectivity and Activity for Efficient Removal of Acetylene from Ethylene on Cu-Based Catalyst. Journal of Physical Chemistry C, 2017, 121, 27936-27949.	3.1	31
43	Ni 2 P/Al 2 O 3 hydrodesulfurization catalysts prepared by separating the nickel compound and hypophosphite. Catalysis Today, 2017, 292, 133-142.	4.4	32
44	Facile Preparation of Ni ₂ P with a Sulfurâ€Containing Surface Layer by Lowâ€Temperature Reduction of Ni ₂ P ₂ S ₆ . Angewandte Chemie - International Edition, 2016, 55, 4030-4034.	13.8	59
45	Facile Preparation of Ni ₂ P with a Sulfurâ€Containing Surface Layer by Lowâ€Temperature Reduction of Ni ₂ P ₂ S ₆ . Angewandte Chemie, 2016, 128, 4098-4102.	2.0	11
46	Bulk and Al2O3-supported Ni2P HDS catalysts prepared by separating the nickel and hypophosphite sources. Catalysis Communications, 2016, 77, 13-17.	3.3	24
47	Preparation of Ni 2 P/Al 2 O 3 by temperature-programmed reduction of a phosphate precursor with a low P/Ni ratio. Journal of Catalysis, 2016, 334, 116-119.	6.2	31
48	Influences of calcination and reduction methods on the preparation of Ni2P/SiO2 and its hydrodenitrogenation performance. Applied Catalysis A: General, 2016, 509, 45-51.	4.3	17
49	Metal Phosphides as High-performance Hydrotreating Catalysts. Journal of the Japan Petroleum Institute, 2015, 58, 197-204.	0.6	5
50	Hydrodesulfurization of dibenzothiophene, 4,6-dimethyldibenzothiophene, and their hydrogenated intermediates over bulk tungsten phosphide. Journal of Catalysis, 2015, 330, 330-343.	6.2	75
51	Kinetic investigation of the effect of H2S in the hydrodesulfurization of FCC gasoline. Fuel, 2014, 123, 43-51.	6.4	18
52	Effect of sulfidation atmosphere on the performance of the CoMo/γ-Al2O3 catalysts in hydrodesulfurization of FCC gasoline. Applied Catalysis A: General, 2014, 471, 70-79.	4.3	45
53	Creation of Oxygen Vacancies in MoO3/SiO2 by Thermal Decomposition of Pre-Impregnated Citric Acid Under N2 and Their Positive Role in Oxidative Desulfurization of Dibenzothiophene. Catalysis Letters, 2014, 144, 531-537.	2.6	22
54	XAS study of Ni2P/MCM-41 passivated by O2/He and H2S/H2. Catalysis Communications, 2014, 43, 21-24.	3.3	9

#	Article	IF	CITATIONS
55	Carbonization of self-assembled nanoporous hemin with a significantly enhanced activity for the oxygen reduction reaction. Faraday Discussions, 2014, 176, 393-408.	3.2	30
56	Hydrodesulfurization of 4,6-dimethyldibenzothiophene and its hydrogenated intermediates over bulk Ni2P. Journal of Catalysis, 2014, 317, 144-152.	6.2	42
57	Synthesis of highly dispersed metal sulfide catalysts via low temperature sulfidation in dielectric barrier discharge plasma. Green Chemistry, 2014, 16, 2619-2626.	9.0	16
58	Decomposition of hydrogen sulfide in non-thermal plasma aided by supported CdS and ZnS semiconductors. Green Chemistry, 2013, 15, 1509.	9.0	28
59	Catalytic performance of P-modified MoO3/SiO2 in oxidative desulfurization by cumene hydroperoxide. Catalysis Communications, 2013, 42, 6-9.	3.3	34
60	XAS study of Ni2P/MCM-41 prepared by hydrogen plasma reduction. Catalysis Today, 2013, 211, 126-130.	4.4	10
61	Hydrogen production via decomposition of hydrogen sulfide by synergy of non-thermal plasma and semiconductor catalysis. International Journal of Hydrogen Energy, 2013, 38, 14415-14423.	7.1	34
62	Different role of H2S and dibenzothiophene in the incorporation of sulfur in the surface of bulk MoP during hydrodesulfurization. Journal of Catalysis, 2013, 300, 197-200.	6.2	43
63	Bioinspired Superhydrophobic Carbonaceous Hairy Microstructures with Strong Water Adhesion and High Gas Retaining Capability. Advanced Materials, 2013, 25, 4561-4565.	21.0	28
64	Oxidative Desulfurization of Dibenzothiophene over Tungsten Oxides Supported on SiO2 and γ-Al2O3. Chemistry Letters, 2013, 42, 8-10.	1.3	11
65	The Effect of CeO2 on the Hydrodenitrogenation Performance of Bulk Ni2P. Topics in Catalysis, 2012, 55, 1010-1021.	2.8	25
66	High-performance phosphide/carbon counter electrode for both iodide and organic redox couples in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 11121.	6.7	129
67	Effect of TiO2 on the hydrodesulfurization performance of bulk Ni2P. Applied Catalysis A: General, 2012, 417-418, 19-25.	4.3	19
68	Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk MoP. Journal of Catalysis, 2012, 287, 161-169.	6.2	124
69	Facile fabrication of nickel phosphate nanotubes via a urea-assisted hydrothermal route. Materials Chemistry and Physics, 2012, 132, 96-103.	4.0	17
70	Oxidative desulfurization of dibenzothiophene and diesel over [Bmim]3PMo12O40. Journal of Catalysis, 2011, 279, 269-275.	6.2	246
71	Hydrodesulfurization of Dibenzothiophene and its Hydrogenated Intermediates Over Bulk Ni2P. Topics in Catalysis, 2011, 54, 290-298.	2.8	24
72	Hydrothermal Synthesis of Ionic Liquid [Bmim]OHâ€Modified TiO ₂ Nanoparticles with Enhanced Photocatalytic Activity under Visible Light. Chemistry - an Asian Journal, 2010, 5, 1171-1177.	3.3	50

#	Article	IF	CITATIONS
73	Hydrothermal synthesis of well-dispersed ultrafine N-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light. Journal of Physics and Chemistry of Solids, 2010, 71, 156-162.	4.0	96
74	Effect of TiO2 on hydrodenitrogenation performances of MCM-41 supported molybdenum phosphides. Catalysis Today, 2010, 149, 11-18.	4.4	31
75	Kinetic study of ionic liquid synthesis in a microchannel reactor. Chemical Engineering Journal, 2010, 162, 350-354.	12.7	28
76	Influence of TiO2 and CeO2 on the hydrogenation activity of bulk Ni2P. Catalysis Communications, 2010, 11, 1129-1132.	3.3	36
77	Role of sulfur in hydrotreating catalysis over nickel phosphide. Journal of Catalysis, 2009, 261, 232-240.	6.2	92
78	Preparation of high-performance MoP hydrodesulfurization catalysts via a sulfidation–reduction procedure. Journal of Catalysis, 2009, 266, 369-379.	6.2	43
79	Synthesis of transition-metal phosphides from oxidic precursors by reduction in hydrogen plasma. Journal of Solid State Chemistry, 2009, 182, 1550-1555.	2.9	37
80	Preparation of MoO3-CeO2-SiO2 Oxidative Desulfurization Catalysts by a Sol-Gel Procedure. Chinese Journal of Catalysis, 2009, 30, 1017-1021.	14.0	19
81	Influence of Templates on the Overgrowth of MCM-41 over HY and the Hydrodesulfurization Performances of the Supported Niâ ''Mo Catalysts. Industrial & Engineering Chemistry Research, 2009, 48, 2870-2877.	3.7	18
82	The Synthesis of Metal Phosphides: Reduction of Oxide Precursors in a Hydrogen Plasma. Angewandte Chemie - International Edition, 2008, 47, 6052-6054.	13.8	94
83	Hydrodesulfurization of dibenzothiophene catalyzed by Ni-Mo sulfides supported on a mixture of MCM-41 and HY zeolite. Applied Catalysis A: General, 2008, 344, 175-182.	4.3	32
84	Promoting Effect of TiO ₂ on the Hydrodenitrogenation Performance of Nickel Phosphide. Journal of Physical Chemistry C, 2008, 112, 16584-16592.	3.1	30
85	Synthesis of novel nanotubular mesoporous nickel phosphates with high performance in epoxidation. Journal of Materials Chemistry, 2008, 18, 3601.	6.7	47
86	Performance of NiMoS/Al2O3 prepared by sonochemical and chemical vapor deposition methods in the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Green Chemistry, 2007, 9, 620.	9.0	17
87	An improved calcination route to obtain high quality mesoporous aluminophosphates materials. Materials Letters, 2007, 61, 2620-2623.	2.6	5
88	Factors affecting the formation of zeolite seed layers and the effects of seed layers on the growth of zeolite silicalite-1 membranes. Frontiers of Chemical Engineering in China, 2007, 1, 172-177.	0.6	2
89	Kinetics of Hydrodesulfurization of Dibenzothiophene Catalyzed by Sulfided Coâ~'Mo/MCM-41. Industrial & Engineering Chemistry Research, 2004, 43, 2324-2329.	3.7	49
90	Hydrodesulfurization of Dibenzothiophene over Siliceous MCM-41-Supported Catalysts. Journal of Catalysis, 2001, 199, 19-29.	6.2	159

#	Article	IF	CITATIONS
91	Fine-tuning of pore size of MCM-41 by adjusting the initial pH of the synthesis mixture. Chemical Communications, 1999, , 2067-2068.	4.1	57
92	MOLECULAR SIEVE CARBON FROM COALS FOR AIR SEPARATION. Petroleum Science and Technology, 1990, 8, 545-561.	0.2	0
93	Ternary-phase nanostructure W ₃ P/WP/W for high-performance pH-universal water/seawater electrolysis. Materials Advances, 0, , .	5.4	2