
Fabricio E L Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1348249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Editorial: Photosynthetic Efficiency Under Multiple Stress Conditions: Prospects for Increasing Crop Yields. Frontiers in Plant Science, 2022, 13, 893730.	3.6	Ο
2	Assessing photosynthesis in plant systems: A cornerstone to aid in the selection of resistant and productive crops. Environmental and Experimental Botany, 2022, 201, 104950.	4.2	14
3	Understanding photosynthesis in a spatial–temporal multiscale: The need for a systemic view. Theoretical and Experimental Plant Physiology, 2021, 33, 113-124.	2.4	17
4	Ammonium overaccumulation in senescent leaves as a novel exclusion mechanism to avoid toxicity in photosynthetically active rice leaves. Environmental and Experimental Botany, 2021, 186, 104452.	4.2	5
5	H2O2Accumulation, Host Cell Death and Differential Levels of Proteins Related to Photosynthesis, Redox Homeostasis, and Required for Viral Replication Explain the Resistance of EMS-mutagenized Cowpea to Cowpea Severe Mosaic Virus. Journal of Plant Physiology, 2020, 245, 153110.	3.5	6
6	Nitrogen-utilization efficiency during early deficiency after a luxury consumptionÂis improved by sustaining nitrate reductase activity and photosynthesis in cotton plants. Plant and Soil, 2019, 443, 185-198.	3.7	9
7	What proteomics can reveal about plant–virus interactions? Photosynthesis-related proteins on the spotlight. Theoretical and Experimental Plant Physiology, 2019, 31, 227-248.	2.4	21
8	Killing two birds with one stone: How do Plant Viruses Break Down Plant Defenses and Manipulate Cellular Processes to Replicate Themselves?. Journal of Plant Biology, 2019, 62, 170-180.	2.1	10
9	High ammonium supply impairs photosynthetic efficiency in rice exposed to excess light. Photosynthesis Research, 2019, 140, 321-335.	2.9	17
10	The regulation of P700 is an important photoprotective mechanism to NaClâ€salinity in <scp><i>Jatropha curcas</i></scp> . Physiologia Plantarum, 2019, 167, 404-417.	5.2	19
11	Proteomic and physiological approaches reveal new insights for uncover the role of rice thylakoidal APX in response to drought stress. Journal of Proteomics, 2019, 192, 125-136.	2.4	18
12	Increase in assimilatory nitrate reduction and photorespiration enhances CO2 assimilation under high light-induced photoinhibition in cotton. Environmental and Experimental Botany, 2019, 159, 66-74.	4.2	17
13	Function and Compensatory Mechanisms Among the Components of the Chloroplastic Redox Network. Critical Reviews in Plant Sciences, 2019, 38, 1-28.	5.7	14
14	Impairment of peroxisomal APX and CAT activities increases protection of photosynthesis under oxidative stress. Journal of Experimental Botany, 2019, 70, 627-639.	4.8	31
15	Photosynthesis impairment and oxidative stress in Jatropha curcas exposed to drought are partially dependent on decreased catalase activity. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	23
16	A resistant cowpea (Vigna unguiculata [L.] Walp.) genotype became susceptible to cowpea severe mosaic virus (CPSMV) after exposure to salt stress. Journal of Proteomics, 2019, 194, 200-217.	2.4	18
17	Ascorbic acid toxicity is related to oxidative stress and enhanced by high light and knockdown of chloroplast ascorbate peroxidases in rice plants. Theoretical and Experimental Plant Physiology, 2018, 30, 41-55.	2.4	11
18	Thylakoidal APX modulates hydrogen peroxide content and stomatal closure in rice (Oryza sativa L.). Environmental and Experimental Botany, 2018, 150, 46-56.	4.2	20

FABRICIO E L CARVALHO

#	Article	IF	CITATIONS
19	Antioxidant protection and PSII regulation mitigate photo-oxidative stress induced by drought followed by high light in cashew plants. Environmental and Experimental Botany, 2018, 149, 59-69.	4.2	53
20	Rice peroxisomal ascorbate peroxidase knockdown affects ROS signaling and triggers early leaf senescence. Plant Science, 2017, 263, 55-65.	3.6	71
21	Photosynthetic and biochemical mechanisms of an EMS-mutagenized cowpea associated with its resistance to cowpea severe mosaic virus. Plant Cell Reports, 2017, 36, 219-234.	5.6	28
22	Silenced rice in both cytosolic ascorbate peroxidases displays pre-acclimation to cope with oxidative stress induced by 3-aminotriazole-inhibited catalase. Journal of Plant Physiology, 2016, 201, 17-27.	3.5	34
23	Mitochondrial GPX1 silencing triggers differential photosynthesis impairment in response to salinity in rice plants. Journal of Integrative Plant Biology, 2016, 58, 737-748.	8.5	33
24	Salinity and osmotic stress trigger different antioxidant responses related to cytosolic ascorbate peroxidase knockdown in rice roots. Environmental and Experimental Botany, 2016, 131, 58-67.	4.2	29
25	Proteomics, photosynthesis and salt resistance in crops: An integrative view. Journal of Proteomics, 2016, 143, 24-35.	2.4	66
26	Quantifying the dynamics of light tolerance in <scp><i>A</i></scp> <i>rabidopsis</i> plants during ontogenesis. Plant, Cell and Environment, 2015, 38, 2603-2617.	5.7	31
27	Peroxisomal <scp>APX</scp> knockdown triggers antioxidant mechanisms favourable for coping with high photorespiratory <scp>H</scp> ₂ <scp>O</scp> ₂ induced by <scp>CAT</scp> deficiency in rice. Plant, Cell and Environment, 2015, 38, 499-513.	5.7	36
28	Cytosolic <scp>APX</scp> knockdown rice plants sustain photosynthesis by regulation of protein expression related to photochemistry, Calvin cycle and photorespiration. Physiologia Plantarum, 2014, 150, 632-645.	5.2	19
29	Chloroplastic and mitochondrial GPX genes play a critical role in rice development. Biologia Plantarum, 2014, 58, 375-378.	1.9	30
30	Salt-induced delay in cotyledonary globulin mobilization is abolished by induction of proteases and leaf growth sink strength at late seedling establishment in cashew. Journal of Plant Physiology, 2014, 171, 1362-1371.	3.5	8
31	The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. Plant Science, 2014, 214, 74-87.	3.6	81
32	Involvement of <i>ASR</i> genes in aluminium tolerance mechanisms in rice. Plant, Cell and Environment, 2013, 36, 52-67.	5.7	86
33	Modulation of genes related to specific metabolic pathways in response to cytosolic ascorbate peroxidase knockdown in rice plants. Plant Biology, 2012, 14, 944-955.	3.8	17
34	Aclimatação ao estresse salino em plantas de arroz induzida pelo pré-tratamento com H2O2. Revista Brasileira De Engenharia Agricola E Ambiental, 2011, 15, 416-423.	1.1	27
35	Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant, Cell and Environment, 2011, 34, 1705-1722.	5.7	106
36	Physiological alterations modulated by rootstock and scion combination in cashew under salinity. Scientia Horticulturae, 2010, 127, 39-45.	3.6	30