Josef Faller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1348214/publications.pdf Version: 2024-02-01

LOSEE FALLER

#	Article	IF	CITATIONS
1	Daily prefrontal closed-loop repetitive transcranial magnetic stimulation (rTMS) produces progressive EEG quasi-alpha phase entrainment in depressed adults. Brain Stimulation, 2022, 15, 458-471.	1.6	14
2	Ballistocardiogram Artifact Reduction in Simultaneous EEC-fMRI Using Deep Learning. IEEE Transactions on Biomedical Engineering, 2021, 68, 78-89.	4.2	17
3	Spatiospectral brain networks reflective of improvisational experience. NeuroImage, 2021, 242, 118458.	4.2	1
4	Investigating Evoked EEG Responses to Targets Presented in Virtual Reality. , 2019, 2019, 5536-5539.		3
5	Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6482-6490.	7.1	86
6	EEG-based Endogenous Online Co-Adaptive Brain-Computer Interfaces: Strategy for Success?. , 2018, , .		7
7	Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials. Journal of Neural Engineering, 2018, 15, 066031.	3.5	131
8	Context Sensitivity of EEG-based Workload Classification under different Affective Valence. IEEE Transactions on Affective Computing, 2017, , 1-1.	8.3	11
9	Affective Aspects of Perceived Loss of Control and Potential Implications for Brain-Computer Interfaces. Frontiers in Human Neuroscience, 2017, 11, 370.	2.0	6
10	Electroencephalography Based Analysis of Working Memory Load and Affective Valence in an N-back Task with Emotional Stimuli. Frontiers in Human Neuroscience, 2017, 11, 616.	2.0	43
11	Evaluation of Different EEG Acquisition Systems Concerning Their Suitability for Building a Brain–Computer Interface: Case Studies. Frontiers in Neuroscience, 2016, 10, 441.	2.8	40
12	Unsupervised adaptive transfer learning for Steady-State Visual Evoked Potential brain-computer interfaces. , 2016, , .		24
13	Cortically Coupled Computing: A New Paradigm for Synergistic Human-Machine Interaction. Computer, 2016, 49, 60-68.	1.1	12
14	Random forests in non-invasive sensorimotor rhythm brain-computer interfaces: a practical and convenient non-linear classifier. Biomedizinische Technik, 2016, 61, 77-86.	0.8	84
15	Bring mental activity into action! An enhanced online co-adaptive brain-computer interface training protocol. , 2015, 2015, 2323-6.		3
16	A co-adaptive sensory motor rhythms Brain-Computer Interface based on common spatial patterns and Random Forest. , 2015, 2015, 1049-52.		21
17	Control or non-control state: that is the question! An asynchronous visual P300-based BCI approach. Journal of Neural Engineering, 2015, 12, 014001.	3.5	46
18	Brain-controlled applications using dynamic P300 speller matrices. Artificial Intelligence in Medicine, 2015, 63, 7-17.	6.5	46

Josef Faller

#	Article	IF	CITATIONS
19	Individually Adapted Imagery Improves Brain-Computer Interface Performance in End-Users with Disability. PLoS ONE, 2015, 10, e0123727.	2.5	45
20	A Co-Adaptive Brain-Computer Interface for End Users with Severe Motor Impairment. PLoS ONE, 2014, 9, e101168.	2.5	40
21	Non motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment. Frontiers in Neuroscience, 2014, 8, 320.	2.8	25
22	Write, read and answer emails with a dry 'n' wireless brain-computer interface system. , 2014, 2014, 1286-9.		5
23	Adaptive hybrid brain-computer interaction: Ask a trainer for assistance!. , 2014, 2014, 1493-6.		2
24	Exploration of the neural correlates of cerebral palsy for sensorimotor BCI control. Frontiers in Neuroengineering, 2014, 7, 20.	4.8	20
25	On the control of brain-computer interfaces by users with cerebral palsy. Clinical Neurophysiology, 2013, 124, 1787-1797.	1.5	133
26	Broad band time-varying estimation of event-related synchronization for user-independent configuration of a brain switch. , 2013, , .		0
27	Brain–computer interfacing: more than the sum of its parts. Soft Computing, 2013, 17, 317-331.	3.6	45
28	Combining BCI with Virtual Reality: Towards New Applications and Improved BCI. Biological and Medical Physics Series, 2012, , 197-220.	0.4	69
29	Autocalibration and Recurrent Adaptation: Towards a Plug and Play Online ERD-BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 313-319.	4.9	130
30	What does clean EEG look like?. , 2012, 2012, 3963-6.		47
31	Context-Awareness as an Enhancement of Brain-Computer Interfaces. Lecture Notes in Computer Science, 2011, , 216-223.	1.3	14
32	An Application Framework for Controlling an Avatar in a Desktop-Based Virtual Environment via a Software SSVEP Brain–Computer Interface. Presence: Teleoperators and Virtual Environments, 2010, 19, 25-34.	0.6	69