Ikuo Towhata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1348099/publications.pdf Version: 2024-02-01

Ικιίο Τουμητά

#	Article	IF	CITATIONS
1	Experimental Study of Dry Granular Flow and Impact Behavior Against a Rigid Retaining Wall. Rock Mechanics and Rock Engineering, 2013, 46, 713-729.	5.4	137
2	Precaution and early warning of surface failure of slopes using tilt sensors. Soils and Foundations, 2015, 55, 1086-1099.	3.1	115
3	Instrumented Model Slope Failure due to Water Seepage. Journal of Natural Disaster Science, 2004, 26, 15-26.	0.4	103
4	Simple monitoring method for precaution of landslides watching tilting and water contents on slopes surface. Landslides, 2010, 7, 351-357.	5.4	97
5	Shaking Table Model Tests on Pile Groups behind Quay Walls Subjected to Lateral Spreading. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2010, 136, 477-489.	3.0	83
6	Pile group response to liquefaction-induced lateral spreading: E-Defense large shake table test. Soil Dynamics and Earthquake Engineering, 2013, 51, 35-46.	3.8	79
7	EFFECT OF NON PLASTIC SILT ON THE ANISOTROPIC BEHAVIOR OF SAND. Soils and Foundations, 2008, 48, 531-545.	3.1	58
8	Influence of particle characteristics on impact event of dry granular flow. Powder Technology, 2015, 270, 53-67.	4.2	56
9	Monitoring of single-particle fragmentation process under static loading using acoustic emission. Applied Acoustics, 2015, 94, 39-45.	3.3	53
10	Compressibility of natural soils subjected to long-term acidic contamination. Environmental Earth Sciences, 2011, 64, 193-200.	2.7	46
11	Dynamic behaviors of underground structures in E-Defense shaking experiments. Soil Dynamics and Earthquake Engineering, 2016, 82, 24-39.	3.8	45
12	High Frequency Acoustic Emissions Observed during Model Pile Penetration in Sand and Implications for Particle Breakage Behavior. International Journal of Geomechanics, 2018, 18, .	2.7	45
13	Early warning system using tilt sensors in Chibo, Kalimpong, Darjeeling Himalayas, India. Natural Hazards, 2018, 94, 727-741.	3.4	44
14	Undrained torsional shear tests on gravelly soils. Landslides, 2004, 1, 185-194.	5.4	39
15	Centrifuge modeling of shallow embedded foundations subjected to reverse fault rupture. Canadian Geotechnical Journal, 2016, 53, 505-519.	2.8	39
16	Development of Real-Time Safety Control System for Urban Gas Supply Network. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2006, 132, 237-249.	3.0	36
17	A study on particle breakage behavior during pile penetration process using acoustic emission source location. Geoscience Frontiers, 2020, 11, 413-427.	8.4	32
18	Compressibility of soils containing kaolinite in acidic environments. KSCE Journal of Civil Engineering, 2016, 20, 623-630.	1.9	29

Ικυο Τοψηατα

#	Article	IF	CITATIONS
19	LIQUEFACTION-INDUCED DAMAGE TO STRUCTURES DURING THE 2011 GREAT EAST JAPAN EARTHQUAKE. Journal of Japan Society of Civil Engineers, 2013, 1, 181-193.	0.2	27
20	Mitigation of seismic settlement of light surface structures by installation of sheet-pile walls around the foundation. Soil Dynamics and Earthquake Engineering, 2015, 72, 108-118.	3.8	26
21	Studying the effects of deformable panels on seismic displacement of gravity quay walls. Ocean Engineering, 2009, 36, 1129-1148.	4.3	25
22	Acoustic emission characteristics of subsoil subjected to vertical pile loading in sand. Journal of Applied Geophysics, 2015, 119, 119-127.	2.1	24
23	Site-specific ground response analysis and liquefaction assessment of Vijayawada city (India). Natural Hazards, 2016, 81, 705-724.	3.4	24
24	1-G model tests and hollow cylindrical torsional shear experiments on seismic residual displacements of fill dams from the viewpoint of seismic performance-based design. Soil Dynamics and Earthquake Engineering, 2010, 30, 423-437.	3.8	23
25	Mitigation measures for pile groups behind quay walls subjected to lateral flow of liquefied soil: Shake table model tests. Soil Dynamics and Earthquake Engineering, 2010, 30, 1043-1060.	3.8	23
26	Geotechnical characteristics of volcanic soil from seismically induced Aratozawa landslide, Japan. Landslides, 2010, 7, 503-510.	5.4	22
27	Geotechnical Characteristics of Volcanic Soils Taken from Recent Eruptions. Geotechnical and Geological Engineering, 2006, 24, 129-161.	1.7	17
28	Feasibility study of using acoustic emission signals for investigation of pile spacing effect on group pile behavior. Applied Acoustics, 2018, 139, 189-202.	3.3	17
29	Experimental Evaluation of Drainage Pipes as a Mitigation against Liquefaction-Induced Settlement of Structures. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, .	3.0	16
30	Performance of piles with different configurations subjected to slope deformation induced by seismic liquefaction. Engineering Geology, 2019, 263, 105355.	6.3	16
31	Application of Advanced Procedures to Model Tests on the Subsoil Behavior Under Vertical Loading of Group Pile in Sand. Indian Geotechnical Journal, 2016, 46, 64-76.	1.4	14
32	Estimation of ground response and local site effects for Vishakhapatnam, India. Natural Hazards, 2019, 97, 555-578.	3.4	14
33	LABORATORY INVESTIGATION ON RATE-DEPENDENT PROPERTIES OF SAND UNDERGOING LOW CONFINING EFFECTIVE STRESS. Soils and Foundations, 2005, 45, 43-60.	0.7	13
34	Development of new drain method for protection of existing pile foundations from liquefaction effects. Soil Dynamics and Earthquake Engineering, 2006, 26, 297-312.	3.8	12
35	Behaviour and frequency characteristics of acoustic emissions from sandy ground under model pile penetration. Near Surface Geophysics, 2016, 14, 515-525.	1.2	11
36	Model tests on behaviour of gravity-type quay walls subjected to strong shaking. Bulletin of the New Zealand Society for Earthquake Engineering, 2009, 42, 47-56.	0.5	11

Ικυο Τοψηατα

#	Article	IF	CITATIONS
37	Analysis of the mechanisms of slope failures triggered by the 2007 Chuetsu Oki earthquake. Geotechnical and Geological Engineering, 2011, 29, 695-708.	1.7	10
38	Laboratory tests on cyclic undrained behavior of loose sand with cohesionless silt and its application to assessment of seismic performance of subsoil. Soil Dynamics and Earthquake Engineering, 2015, 79, 365-378.	3.8	10
39	Qualification of residential land from the viewpoint of liquefaction vulnerability. Soil Dynamics and Earthquake Engineering, 2016, 91, 260-271.	3.8	10
40	Impact and cyclic shaking on loose sand properties in laminar box using gap sensors. Soil Dynamics and Earthquake Engineering, 2014, 66, 401-414.	3.8	9
41	Mitigation of Nonuniform Settlement of Structures due to Seismic Liquefaction. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2018, 144, .	3.0	8
42	Mechanism and future risk of slope instability induced by extreme rainfall event in Izu Oshima Island, Japan. Natural Hazards, 2021, 105, 501-530.	3.4	8
43	Acceleration of aging effect of drained cyclic pre-shearing and high temperature consolidation on liquefaction resistance of sandy soils. Japanese Geotechnical Journal, 2014, 9, 707-719.	0.1	7
44	Flow Failure of Saturated Sand under Simultaneous Monotonic and Cyclic Stresses. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2000, 126, 131-138.	3.0	6
45	DESIGN OF GRID-WALL SOIL IMPROVEMENT TO MITIGATE SOIL LIQUEFACTION DAMAGE IN RESIDENTIAL AREAS IN URAYASU. Journal of Japan Society of Civil Engineers, 2017, 5, 27-44.	0.2	6
46	Displacement reducer fuses for improving seismic performance of caisson quay walls. Bulletin of Earthquake Engineering, 2011, 9, 1259-1288.	4.1	5
47	Investigation of mechanical properties of soft rock due to laboratory reproduction of physical weathering process. Soils and Foundations, 2017, 57, 267-276.	3.1	5
48	New mitigation method for pipeline uplift during seismic event. Geotechnical Research, 2016, 3, 54-64.	1.4	4
49	STRESS STRAIN RELATIONSHIP OF SANDY SOILS OBTAINED FROM CENTRIFUGE SHAKING TABLE TESTS. Doboku Gakkai Ronbunshu, 1996, 1996, 73-82.	0.2	3
50	Moving toward cities where earthquakes will not cause a grievous disaster. Japan Architectural Review, 2018, 1, 410-418.	1.1	3
51	A complete introduction to the SCJ proposal and its commentary on the development of seismically resilient cities. Earthquake Engineering and Engineering Vibration, 2018, 17, 677-691.	2.3	3
52	EXPERIMENTAL STUDY ON STRAIN-RATE DEPENDENCY IN POST-LIQUEFACTION BEHAVIOUR OF SAND. Doboku Gakkai Ronbunshu, 2001, 2001, 97-107.	0.2	2
53	Some Important Aspects of Physical Modelling of Liquefaction in 1-g Shaking Table. AIP Conference Proceedings, 2008, , .	0.4	2
54	Particle breakage and its influence on soil behavior under undrained condition. Japanese Geotechnical Society Special Publication, 2016, 2, 386-390.	0.2	2

Ικυο Τοψηατα

#	Article	IF	CITATIONS
55	Risk evaluation and warning threshold of unstable slope using tilting sensor array. Natural Hazards, 2022, 114, 127-156.	3.4	2
56	Dynamic analysis of ground with rigorous use of strain dependency and its application to seismic microzonation of alluvial plane. Natural Hazards, 2012, 64, 1079-1104.	3.4	1
57	On ageing of liquefaction resistance of sand. Japanese Geotechnical Society Special Publication, 2016, 2, 800-805.	0.2	1
58	Sustainability in Geotechnical Engineering and Related Urban Issues – Editors' Note. Indian Geotechnical Journal, 2018, 48, 205-206.	1.4	1
59	AN ENERGY-BASED THREE-DIMENSIONAL MODEL TO PREDICT PERMANENT GROUND DISPLACEMENTS CAUSED BY LIQUEFACTION. Proceedings of the Jsce Earthquake Engineering Symposium, 1991, 21, 277-280.	0.1	0
60	RECONNAISSANCE REPORT OF THE 1993 GUAM EARTHQUAKE. Doboku Gakkai Ronbunshu, 1995, 1995, 291-303.	0.2	0
61	VERIFICATION OF NUMERICAL ANALYSIS ON LATERAL FLOW OF LIQUEFIED GROUND BASED ON VISCOUS FLUID MODEL. Doboku Gakkai Ronbunshu, 2004, 2004, 25-36.	0.2	0
62	Prediction of Liquefaction-Induced Ground Deformation. , 2005, , 524.		0
63	Soft rock slope weathering due to rainwater Japanese Geotechnical Society Special Publication, 2015, 1, 56-61.	0.2	0
64	Experimental interpretation of seismically induced instability of mountain slopes. Ce/Papers, 2018, 2, 255-260.	0.3	0
65	Closure to "Flow Failure of Saturated Sand under Simultaneous Monotonic and Cyclic Stresses―by Jorge Meneses-Loja, Kenji Ishihara, and Ikuo Towhata. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2001, 127, 554.	3.0	0
66	Damage survey report of Pakistan earthquake. Journal of Japan Association for Earthquake Engineering, 2006, 6, 35-57.	0.3	0
67	Recent rainfall events and geotechnical thinking. Japanese Geotechnical Society Special Publication, 2015, 3, 7-10.	0.2	0
68	Environmental geotechnics and education initiatives for recovery from the Fukushima I Nuclear Power Plant accident. Japanese Geotechnical Society Special Publication, 2016, 2, 1982-1985.	0.2	0
69	Large-Scale Shake Table Test on Behavior of Underground Structure with the Curved Portion During an Earthquake. Journal of Disaster Research, 2017, 12, 868-881.	0.7	0