
Yonglong Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/134801/publications.pdf Version: 2024-02-01

YONCLONGLU

#	Article	IF	CITATIONS
1	Impacts of soil and water pollution on food safety and health risks in China. Environment International, 2015, 77, 5-15.	4.8	804
2	Policy: Five priorities for the UN Sustainable Development Goals. Nature, 2015, 520, 432-433.	13.7	337
3	Forty years of reform and opening up: China's progress toward a sustainable path. Science Advances, 2019, 5, eaau9413.	4.7	222
4	Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environmental Pollution, 2018, 239, 670-680.	3.7	213
5	A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China. Chemosphere, 2015, 129, 87-99.	4.2	207
6	Addressing China's grand challenge of achieving food security while ensuring environmental sustainability. Science Advances, 2015, 1, e1400039.	4.7	182
7	Drivers of change in China's energy-related CO ₂ emissions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29-36.	3.3	174
8	Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan. Journal of Environmental Sciences, 2013, 25, 2003-2013.	3.2	146
9	Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities. Environmental Pollution, 2014, 190, 115-122.	3.7	139
10	Pollution pathways and release estimation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in central and eastern China. Science of the Total Environment, 2017, 580, 1247-1256.	3.9	138
11	Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: Implication for planting optimization and food safety. Environment International, 2019, 127, 671-684.	4.8	126
12	Risk assessment and source identification of perfluoroalkyl acids in surface and ground water: Spatial distribution around a mega-fluorochemical industrial park, China. Environment International, 2016, 91, 69-77.	4.8	118
13	Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China. Environment International, 2017, 106, 37-47.	4.8	105
14	Shifts in production of perfluoroalkyl acids affect emissions and concentrations in the environment of the Xiaoqing River Basin, China. Journal of Hazardous Materials, 2016, 307, 55-63.	6.5	104
15	Bioaccumulation characteristics of perfluoroalkyl acids (PFAAs) in coastal organisms from the west coast of South Korea. Chemosphere, 2015, 129, 157-163.	4.2	89
16	Occurrence, sources and health risk of polyfluoroalkyl substances (PFASs) in soil, water and sediment from a drinking water source area. Ecotoxicology and Environmental Safety, 2019, 174, 208-217.	2.9	89
17	Traditional and new POPs in environments along the Bohai and Yellow Seas: An overview of China and South Korea. Chemosphere, 2017, 169, 503-515.	4.2	82
18	An overview of hexabromocyclododecane (HBCDs) in environmental media with focus on their potential risk and management in China. Environmental Pollution, 2018, 236, 283-295.	3.7	78

#	Article	IF	CITATIONS
19	Distribution, source, and risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban and rural soils around the Yellow and Bohai Seas, China. Environmental Pollution, 2018, 239, 233-241.	3.7	75
20	Bacterial community compositions in sediment polluted by perfluoroalkyl acids (PFAAs) using Illumina high-throughput sequencing. Environmental Science and Pollution Research, 2016, 23, 10556-10565.	2.7	72
21	Bioaccumulation of microcystins (MCs) in four fish species from Lake Taihu, China: Assessment of risks to humans. Science of the Total Environment, 2014, 487, 224-232.	3.9	69
22	A review of spatial and temporal assessment of PFOS and PFOA contamination in China. Chemistry and Ecology, 2009, 25, 163-177.	0.6	67
23	Coupled production and emission of short chain perfluoroalkyl acids from a fast developing fluorochemical industry: Evidence from yearly and seasonal monitoring in Daling River Basin, China. Environmental Pollution, 2016, 218, 1234-1244.	3.7	67
24	Evaluation of toxicological risk of foodstuffs contaminated with heavy metals in Swat, Pakistan. Ecotoxicology and Environmental Safety, 2014, 108, 224-232.	2.9	66
25	Spatial variation in biodiversity loss across China under multiple environmental stressors. Science Advances, 2020, 6, .	4.7	64
26	The relative risk and its distribution of endocrine disrupting chemicals, pharmaceuticals and personal care products to freshwater organisms in the Bohai Rim, China. Science of the Total Environment, 2017, 590-591, 633-642.	3.9	62
27	Nuclear power in China after Fukushima: understanding public knowledge, attitudes, and trust. Journal of Risk Research, 2014, 17, 435-451.	1.4	59
28	Ecosystem health towards sustainability. Ecosystem Health and Sustainability, 2015, 1, 1-15.	1.5	59
29	Perfluoroalkyl acids (PFAAs) in indoor and outdoor dusts around a mega fluorochemical industrial park in China: Implications for human exposure. Environment International, 2016, 94, 667-673.	4.8	59
30	Phosphorus recovery: a need for an integrated approach. Ecosystem Health and Sustainability, 2018, 4, 48-57.	1.5	58
31	Home produced eggs: An important pathway of human exposure to perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) around a fluorochemical industrial park in China. Environment International, 2017, 101, 1-6.	4.8	56
32	Transport of Hexabromocyclododecane (HBCD) into the soil, water and sediment from a large producer in China. Science of the Total Environment, 2018, 610-611, 94-100.	3.9	56
33	Bioaccumulation and human exposure of perfluoroalkyl acids (PFAAs) in vegetables from the largest vegetable production base of China. Environment International, 2020, 135, 105347.	4.8	56
34	Are levels of perfluoroalkyl substances in soil related to urbanization in rapidly developing coastal areas in North China?. Environmental Pollution, 2015, 199, 102-109.	3.7	55
35	Ecology of industrial pollution in China. Ecosystem Health and Sustainability, 2020, 6, .	1.5	54
36	Exploring the fate, transport and risk of Perfluorooctane Sulfonate (PFOS) in a coastal region of China using a multimedia model. Environment International, 2015, 85, 15-26.	4.8	53

#	Article	IF	CITATIONS
37	Removal of perfluoalkyl acids (PFAAs) through fluorochemical industrial and domestic wastewater treatment plants and bioaccumulation in aquatic plants in river and artificial wetland. Environment International, 2019, 129, 76-85.	4.8	52
38	E-participation for environmental sustainability in transitional urban China. Sustainability Science, 2017, 12, 187-202.	2.5	51
39	Perfluoroalkyl and polyfluoroalkyl substances in sediments from South Bohai coastal watersheds, China. Marine Pollution Bulletin, 2014, 85, 619-627.	2.3	50
40	Why small and medium chemical companies continue to pose severe environmental risks in rural China. Environmental Pollution, 2014, 185, 158-167.	3.7	50
41	Tracing perfluoroalkyl substances (PFASs) in soils along the urbanizing coastal area of Bohai and Yellow Seas, China. Environmental Pollution, 2018, 238, 404-412.	3.7	50
42	Associations between serum concentrations of perfluoroalkyl acids and serum lipid levels in a Chinese population. Ecotoxicology and Environmental Safety, 2014, 106, 246-252.	2.9	49
43	Bioaccumulation, trophic transfer and biomagnification of perfluoroalkyl acids (PFAAs) in the marine food web of the South China Sea. Journal of Hazardous Materials, 2021, 405, 124681.	6.5	47
44	Hydrogeochemistry and quality of surface water and groundwater in the drinking water source area of an urbanizing region. Ecotoxicology and Environmental Safety, 2019, 186, 109628.	2.9	46
45	Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings. Journal of Environmental Sciences, 2013, 25, 1936-1946.	3.2	45
46	Prevalent fecal contamination in drinking water resources and potential health risks in Swat, Pakistan. Journal of Environmental Sciences, 2018, 72, 1-12.	3.2	44
47	Regulating wildlife conservation and food safety to prevent human exposure to novel virus. Ecosystem Health and Sustainability, 2020, 6, .	1.5	43
48	Effects of Perfluorooctane sulfonate on immobilization, heartbeat, reproductive and biochemical performance of Daphnia magna. Chemosphere, 2017, 168, 1613-1618.	4.2	40
49	Regional multi-compartment ecological risk assessment: Establishing cadmium pollution risk in the northern Bohai Rim, China. Environment International, 2016, 94, 283-291.	4.8	38
50	Using gridded multimedia model to simulate spatial fate of Benzo[α]pyrene on regional scale. Environment International, 2014, 63, 53-63.	4.8	37
51	Perfluorinated compounds in water and sediment from coastal regions of the northern Bohai Sea, China. Chemistry and Ecology, 2011, 27, 165-176.	0.6	35
52	Effects of age, gender and region on serum concentrations of perfluorinated compounds in general population of Henan, China. Chemosphere, 2014, 110, 104-110.	4.2	35
53	Which metal represents the greatest risk to freshwater ecosystem in bohai region of china?. Ecosystem Health and Sustainability, 2017, 3, .	1.5	34
54	Toxicological effects on earthworms (Eisenia fetida) exposed to sub-lethal concentrations of BDE-47 and BDE-209 from a metabolic point. Environmental Pollution, 2018, 240, 653-660.	3.7	34

#	Article	IF	CITATIONS
55	Risk ranking of environmental contaminants in Xiaoqing River, a heavily polluted river along urbanizing Bohai Rim. Chemosphere, 2018, 204, 28-35.	4.2	33
56	Ecogenomic responses of benthic communities under multiple stressors along the marine and adjacent riverine areas of northern Bohai Sea, China. Chemosphere, 2017, 172, 166-174.	4.2	31
57	Hexabromocyclododecanes (HBCDDs) in surface soils from coastal cities in North China: Correlation between diastereoisomer profiles and industrial activities. Chemosphere, 2016, 148, 504-510.	4.2	29
58	Biomagnification of Hexabromocyclododecane (HBCD) in a coastal ecosystem near a large producer in China: Human exposure implication through food web transfer. Science of the Total Environment, 2018, 624, 1213-1220.	3.9	29
59	Chemical-, site-, and taxa-dependent benthic community health in coastal areas of the Bohai Sea and northern Yellow Sea: A sediment quality triad approach. Science of the Total Environment, 2018, 645, 743-752.	3.9	29
60	Which persistent organic pollutants in the rivers of the Bohai Region of China represent the greatest risk to the local ecosystem?. Chemosphere, 2017, 178, 11-18.	4.2	28
61	Public perception and attitude towards chemical industry park in Dalian, Bohai Rim. Environmental Pollution, 2018, 235, 825-835.	3.7	28
62	Multiple pollutants stress the coastal ecosystem with climate and anthropogenic drivers. Journal of Hazardous Materials, 2022, 424, 127570.	6.5	28
63	Antioxidant and metabolic responses induced by cadmium and pyrene in the earthworm <i>Eisenia fetida</i> in two different systems: contact and soil tests. Chemistry and Ecology, 2009, 25, 205-215.	0.6	27
64	Polycyclic aromatic hydrocarbons in soils around Guanting Reservoir, Beijing, China. Chemistry and Ecology, 2009, 25, 39-48.	0.6	27
65	Which commonly monitored chemical contaminant in the Bohai region and the Yangtze and Pearl Rivers of China poses the greatest threat to aquatic wildlife?. Environmental Toxicology and Chemistry, 2018, 37, 1115-1121.	2.2	27
66	Integrated regional ecological risk assessment of multiple metals in the soils: A case in the region around the Bohai Sea and the Yellow Sea. Environmental Pollution, 2018, 242, 288-297.	3.7	27
67	Climate change induced eutrophication of cold-water lake in an ecologically fragile nature reserve. Journal of Environmental Sciences, 2019, 75, 359-369.	3.2	27
68	Occurrence and health risk of perfluoroalkyl acids (PFAAs) in seafood from Yellow Sea, China. Science of the Total Environment, 2019, 665, 1026-1034.	3.9	26
69	Discovery of Welcome Biopolymers in Surface Water: Improvements in Drinking Water Production. Environmental Science & Technology, 2021, 55, 2076-2086.	4.6	26
70	Urban and rural transport of semivolatile organic compounds at regional scale: A multimedia model approach. Journal of Environmental Sciences, 2016, 39, 228-241.	3.2	25
71	Managing health risks of perfluoroalkyl acids in aquatic food from a river-estuary-sea environment affected by fluorochemical industry. Environment International, 2020, 138, 105621.	4.8	25
72	Mortality, growth and metabolic responses by 1H-NMR-based metabolomics of earthworms to sodium selenite exposure in soils. Ecotoxicology and Environmental Safety, 2019, 181, 69-77.	2.9	24

#	Article	IF	CITATIONS
73	Ecological Risk Assessment of Arsenic and Metals in Surface Sediments from Estuarine and Coastal Areas of the Southern Bohai Sea, China. Human and Ecological Risk Assessment (HERA), 2014, 20, 388-401.	1.7	23
74	Using hydrodynamic model to predict PFOS and PFOA transport in theÂDaling River and its tributary, a heavily polluted river into the Bohai Sea, China. Chemosphere, 2017, 167, 344-352.	4.2	23
75	Are unintentionally produced polychlorinated biphenyls the main source of polychlorinated biphenyl occurrence in soils?. Environmental Pollution, 2018, 243, 492-500.	3.7	22
76	Life cycle analysis of perfluorooctanoic acid (PFOA) and its salts in China. Environmental Science and Pollution Research, 2017, 24, 11254-11264.	2.7	21
77	Status and fuzzy comprehensive assessment of metals and arsenic contamination in farmland soils along the Yanghe River, China. Chemistry and Ecology, 2011, 27, 415-426.	0.6	20
78	Dynamic multimedia fate simulation of Perfluorooctane Sulfonate (PFOS) from 1981 to 2050 in the urbanizing Bohai Rim of China. Environmental Pollution, 2018, 235, 235-244.	3.7	20
79	Potential effects of changes in climate and emissions on distribution and fate of perfluorooctane sulfonate in the Bohai Rim, China. Science of the Total Environment, 2018, 613-614, 352-360.	3.9	20
80	Bridge knowledge gaps in environmental health and safety for sustainable development of nano-industries. Nano Today, 2018, 23, 11-15.	6.2	20
81	Simulating transport, flux, and ecological risk of perfluorooctanoate in a river affected by a major fluorochemical manufacturer in northern China. Science of the Total Environment, 2019, 657, 792-803.	3.9	20
82	Perfluorinated Compounds in Aquatic Products from Bohai Bay, Tianjin, China. Human and Ecological Risk Assessment (HERA), 2011, 17, 1279-1291.	1.7	17
83	Perfluoroalkyl substances and organochlorine pesticides in sediments from Huaihe watershed in China. Journal of Environmental Sciences, 2014, 26, 2198-2206.	3.2	17
84	Heavy metals contamination, potential pathways and risks along the Indus Drainage System of Pakistan. Science of the Total Environment, 2022, 809, 151994.	3.9	17
85	Comprehensive assessment of regional selenium resources in soils based on the analytic hierarchy process: Assessment system construction and case demonstration. Science of the Total Environment, 2017, 605-606, 618-625.	3.9	16
86	Atmospheric diffusion of perfluoroalkyl acids emitted from fluorochemical industry and its associated health risks. Environment International, 2021, 146, 106247.	4.8	15
87	Organochlorine pesticides (HCHs and DDTs) in soils along the north coastal areas of the Bohai Sea, China. Chemistry and Ecology, 2010, 26, 339-352.	0.6	14
88	Coupling relation between urbanization and ecological risk of PAHs on coastal terrestrial ecosystem around the Bohai and Yellow Sea. Environmental Pollution, 2021, 268, 115680.	3.7	14
89	Evaluation and Spatial Diffusion of Health Risk of Persistent Organic Pollutants (POPs) in Soils Surrounding Chemical Industrial Parks in China. Human and Ecological Risk Assessment (HERA), 2010, 16, 989-1006.	1.7	12
90	Multimedia fate and transport simulation of perfluorooctanoic acid/ perfluorooctanoate in an urbanizing area. Science of the Total Environment, 2018, 643, 90-97.	3.9	12

#	Article	IF	CITATIONS
91	Transport and environmental risks of perfluoroalkyl acids in a large irrigation and drainage system for agricultural production. Environment International, 2021, 157, 106856.	4.8	12
92	Multi-factors influencing the spatial distribution of polycyclic aromatic hydrocarbons in soils surrounding drinking water protection zone. Journal of Environmental Sciences, 2013, 25, 1643-1648.	3.2	10
93	Biomanipulation impacts on per-and polyfluoroalkyl substances accumulation and trophic transfer in an eutrophic lake. Environment International, 2022, 160, 107057.	4.8	10
94	First report of perfluoroalkyl acids (PFAAs) in the Indus Drainage System: Occurrence, source and environmental risk. Environmental Research, 2022, 211, 113113.	3.7	10
95	Determination of water environment standards based on water quality criteria in China: Limitations and feasibilities. Journal of Environmental Sciences, 2017, 57, 127-136.	3.2	9
96	Sublethal or not? Responses of multiple biomarkers in Daphnia magna to single and joint effects of BDE-47 and BDE-209. Ecotoxicology and Environmental Safety, 2018, 164, 164-171.	2.9	9
97	Urban-rural gradients of polycyclic aromatic hydrocarbons in soils at a regional scale: Quantification and prediction. Journal of Environmental Management, 2019, 249, 109406.	3.8	9
98	Assessing the contribution of atmospheric transport and tourism activities to the occurrence of perfluoroalkyl acids (PFAAs) in an Alpine Nature Reserve. Science of the Total Environment, 2019, 697, 133851.	3.9	9
99	Driving mechanisms for decoupling CO ₂ emissions from economic development in the ten largest emission countries. Ecosystem Health and Sustainability, 2022, 8, .	1.5	9
100	Effects of urbanization on the distribution of polycyclic aromatic hydrocarbons in China's estuarine rivers. Environmental Pollution, 2022, 301, 119001.	3.7	9
101	Profiling the environmental risk management of Chinese local environmental agencies. Journal of Risk Research, 2013, 16, 1259-1275.	1.4	8
102	Response of the phytoplankton community to water quality in a local alpine glacial lake of Xinjiang Tianchi, China: potential drivers and management implications. Environmental Sciences: Processes and Impacts, 2017, 19, 1300-1311.	1.7	8
103	Interaction between pollution and climate change augments ecological risk to a coastal ecosystem. Ecosystem Health and Sustainability, 2018, 4, 161-168.	1.5	7
104	Biodiversity conservation in a changing environment beyond 2020. Science Advances, 2021, 7, .	4.7	7
105	Factors influencing polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) emissions and control in major industrial sectors: Case evidence from Shandong Province, China. Journal of Environmental Sciences, 2014, 26, 1513-1522.	3.2	6
106	Terrestrial ecosystem health under longâ€ŧerm metal inputs: modeling and risk assessment. Ecosystem Health and Sustainability, 2016, 2, .	1.5	6
107	Priority areas at the frontiers of ecology and energy. Ecosystem Health and Sustainability, 2018, 4, .	1.5	6
108	Polycyclic aromatic hydrocarbons in soils of an industrial area of China: multivariate analyses and geostatistics. Chemistry and Ecology, 2010, 26, 35-48.	0.6	5

#	Article	IF	CITATIONS
109	Ecological risks of polycyclic aromatic hydrocarbons found in coastal sediments along the northern shores of the Bohai Sea (China). Chemistry and Ecology, 2014, 30, 501-512.	0.6	5
110	Integrated index-based assessment reveals long-term conservation progress in implementation of Convention on Biological Diversity. Science Advances, 2022, 8, eabj8093.	4.7	4
111	PCDD/Fs emission, risk characterization, and reduction in China's secondary copper production industry. Frontiers of Environmental Science and Engineering, 2013, 7, 589-597.	3.3	2
112	Polychlorinated dibenzo <i>p</i> -dioxins and dibenzofurans emissions in a primary copper smelter in China. Chemistry and Ecology, 2013, 29, 234-245.	0.6	2
113	Drivers of changes in natural resources consumption of Central African countries. Clean Technologies and Recycling, 2022, 2, 80-102.	1.3	0