## Jeffrey L Gunter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1347728/publications.pdf Version: 2024-02-01



FEEDEN | CUNTED

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance<br>Imaging, 2008, 27, 685-691.                                                                                           | 3.4  | 2,553     |
| 2  | Cascading network failure across the Alzheimer's disease spectrum. Brain, 2016, 139, 547-562.                                                                                                                               | 7.6  | 401       |
| 3  | Update on the Magnetic Resonance Imaging core of the Alzheimer's Disease Neuroimaging Initiative.<br>Alzheimer's and Dementia, 2010, 6, 212-220.                                                                            | 0.8  | 311       |
| 4  | Age, Sex, and <i>APOE</i> ε4 Effects on Memory, Brain Structure, and β-Amyloid Across the Adult Life<br>Span. JAMA Neurology, 2015, 72, 511.                                                                                | 9.0  | 305       |
| 5  | Age-specific population frequencies of cerebral β-amyloidosis and neurodegeneration among people<br>with normal cognitive function aged 50–89 years: a cross-sectional study. Lancet Neurology, The,<br>2014, 13, 997-1005. | 10.2 | 297       |
| 6  | A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer's disease severity. NeuroImage: Clinical, 2016, 11, 802-812.                                                                      | 2.7  | 249       |
| 7  | Associations of Amyloid, Tau, and Neurodegeneration Biomarker Profiles With Rates of Memory<br>Decline Among Individuals Without Dementia. JAMA - Journal of the American Medical Association,<br>2019, 321, 2316.          | 7.4  | 223       |
| 8  | Vascular and amyloid pathologies are independent predictors of cognitive decline in normal elderly.<br>Brain, 2015, 138, 761-771.                                                                                           | 7.6  | 222       |
| 9  | Prevalence of Biologically vs Clinically Defined Alzheimer Spectrum Entities Using the National<br>Institute on Aging–Alzheimer's Association Research Framework. JAMA Neurology, 2019, 76, 1174.                           | 9.0  | 182       |
| 10 | Different definitions of neurodegeneration produce similar amyloid/neurodegeneration biomarker group findings. Brain, 2015, 138, 3747-3759.                                                                                 | 7.6  | 170       |
| 11 | Comparison of different methodological implementations of voxel-based morphometry in neurodegenerative disease. NeuroImage, 2005, 26, 600-608.                                                                              | 4.2  | 169       |
| 12 | Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum. Cortex, 2017, 97, 143-159.                                                                                                             | 2.4  | 162       |
| 13 | AVâ€1451 tau and βâ€amyloid positron emission tomography imaging in dementia with Lewy bodies. Annals of Neurology, 2017, 81, 58-67.                                                                                        | 5.3  | 152       |
| 14 | Dementia with Lewy bodies. Neurology, 2014, 83, 801-809.                                                                                                                                                                    | 1.1  | 143       |
| 15 | The bivariate distribution of amyloid-β and tau: relationship with established neurocognitive clinical syndromes. Brain, 2019, 142, 3230-3242.                                                                              | 7.6  | 129       |
| 16 | White matter hyperintensities: relationship to amyloid and tau burden. Brain, 2019, 142, 2483-2491.                                                                                                                         | 7.6  | 126       |
| 17 | Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom.<br>Magnetic Resonance in Medicine, 2018, 79, 48-61.                                                                           | 3.0  | 116       |
| 18 | Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies. Neurobiology of Aging, 2015, 36, 452-461.                                                                                                    | 3.1  | 113       |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. Neurobiology of Aging, 2014, 35, 2096-2106.                               | 3.1  | 108       |
| 20 | Transition rates between amyloid and neurodegeneration biomarker states and to dementia: a population-based, longitudinal cohort study. Lancet Neurology, The, 2016, 15, 56-64.                    | 10.2 | 104       |
| 21 | Working memory and language network dysfunctions in logopenic aphasia: a task-free fMRI comparison with Alzheimer's dementia. Neurobiology of Aging, 2015, 36, 1245-1252.                          | 3.1  | 83        |
| 22 | Predicting future rates of tau accumulation on PET. Brain, 2020, 143, 3136-3150.                                                                                                                   | 7.6  | 74        |
| 23 | Effect of intellectual enrichment on AD biomarker trajectories. Neurology, 2016, 86, 1128-1135.                                                                                                    | 1.1  | 71        |
| 24 | Association of Bilateral Salpingo-Oophorectomy Before Menopause Onset With Medial Temporal Lobe<br>Neurodegeneration. JAMA Neurology, 2019, 76, 95.                                                | 9.0  | 69        |
| 25 | Entorhinal cortex tau, amyloid-β, cortical thickness and memory performance in non-demented subjects. Brain, 2019, 142, 1148-1160.                                                                 | 7.6  | 68        |
| 26 | Recommendations towards standards for quantitative MRI (qMRI) and outstanding needs. Journal of<br>Magnetic Resonance Imaging, 2019, 49, e26-e39.                                                  | 3.4  | 67        |
| 27 | β-Amyloid PET and neuropathology in dementia with Lewy bodies. Neurology, 2020, 94, e282-e291.                                                                                                     | 1.1  | 65        |
| 28 | Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge.<br>NeuroImage, 2015, 123, 149-164.                                                                | 4.2  | 63        |
| 29 | Associations of quantitative susceptibility mapping with Alzheimer's disease clinical and imaging markers. NeuroImage, 2021, 224, 117433.                                                          | 4.2  | 63        |
| 30 | Optimizing PiB-PET SUVR change-over-time measurement by a large-scale analysis of longitudinal reliability, plausibility, separability, and correlation with MMSE. NeuroImage, 2017, 144, 113-127. | 4.2  | 59        |
| 31 | Atrial fibrillation, cognitive impairment, and neuroimaging. Alzheimer's and Dementia, 2016, 12, 391-398.                                                                                          | 0.8  | 58        |
| 32 | Brain structure and cognition 3 years after the end of an early menopausal hormone therapy trial.<br>Neurology, 2018, 90, e1404-e1412.                                                             | 1.1  | 57        |
| 33 | Cerebral microbleeds. Neurology, 2019, 92, e253-e262.                                                                                                                                              | 1.1  | 53        |
| 34 | Deep learning-based brain age prediction in normal aging and dementia. Nature Aging, 2022, 2, 412-424.                                                                                             | 11.6 | 52        |
| 35 | Development of a cerebrovascular magnetic resonance imaging biomarker for cognitive aging. Annals of Neurology, 2018, 84, 705-716.                                                                 | 5.3  | 49        |
| 36 | A Comparison of Partial Volume Correction Techniques for Measuring Change in Serial Amyloid PET SUVR. Journal of Alzheimer's Disease, 2019, 67, 181-195.                                           | 2.6  | 48        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effects of hormone therapy on brain structure. Neurology, 2016, 87, 887-896.                                                                                                                                             | 1.1 | 47        |
| 38 | Antemortem MRI findings associated with microinfarcts at autopsy. Neurology, 2014, 82, 1951-1958.                                                                                                                        | 1.1 | 45        |
| 39 | Tau and Amyloid Relationships with Resting-state Functional Connectivity in Atypical Alzheimer's<br>Disease. Cerebral Cortex, 2021, 31, 1693-1706.                                                                       | 2.9 | 44        |
| 40 | A standard system phantom for magnetic resonance imaging. Magnetic Resonance in Medicine, 2021, 86,<br>1194-1211.                                                                                                        | 3.0 | 44        |
| 41 | Cardiometabolic Health and Longitudinal Progression of White Matter Hyperintensity. Stroke, 2019, 50, 3037-3044.                                                                                                         | 2.0 | 39        |
| 42 | Changing the face of neuroimaging research: Comparing a new MRI de-facing technique with popular alternatives. NeuroImage, 2021, 231, 117845.                                                                            | 4.2 | 38        |
| 43 | Pittsburgh compound-B PET white matter imaging and cognitive function in late multiple sclerosis.<br>Multiple Sclerosis Journal, 2018, 24, 739-749.                                                                      | 3.0 | 34        |
| 44 | [P2–415]: THE MAYO CLINIC ADULT LIFESPAN TEMPLATE: BETTER QUANTIFICATION ACROSS THE LIFESPAN.<br>Alzheimer's and Dementia, 2017, 13, P792.                                                                               | 0.8 | 33        |
| 45 | Progressive agrammatic aphasia without apraxia of speech as a distinct syndrome. Brain, 2019, 142, 2466-2482.                                                                                                            | 7.6 | 33        |
| 46 | Predicting Survival in Dementia With Lewy Bodies With Hippocampal Volumetry. Movement Disorders, 2016, 31, 989-994.                                                                                                      | 3.9 | 32        |
| 47 | Prevalence and Heterogeneity of Cerebrovascular Disease Imaging Lesions. Mayo Clinic Proceedings,<br>2020, 95, 1195-1205.                                                                                                | 3.0 | 30        |
| 48 | Comparison of [ 18 F]Flutemetamol and [ 11 C]Pittsburgh Compound-B in cognitively normal young,<br>cognitively normal elderly, and Alzheimer's disease dementia individuals. NeuroImage: Clinical, 2017, 16,<br>295-302. | 2.7 | 30        |
| 49 | Regional proton magnetic resonance spectroscopy patterns in dementia with Lewy bodies.<br>Neurobiology of Aging, 2014, 35, 1483-1490.                                                                                    | 3.1 | 29        |
| 50 | Automated detection of imaging features of disproportionately enlarged subarachnoid space hydrocephalus using machine learning methods. NeuroImage: Clinical, 2019, 21, 101605.                                          | 2.7 | 29        |
| 51 | Characterizing White Matter Tract Degeneration in Syndromic Variants of Alzheimer's Disease: A<br>Diffusion Tensor Imaging Study. Journal of Alzheimer's Disease, 2015, 49, 633-643.                                     | 2.6 | 27        |
| 52 | Joint associations of β-amyloidosis and cortical thickness with cognition. Neurobiology of Aging, 2018, 65, 121-131.                                                                                                     | 3.1 | 27        |
| 53 | Association of Initial Î <sup>2</sup> -Amyloid Levels With Subsequent Flortaucipir Positron Emission Tomography Changes in Persons Without Cognitive Impairment. JAMA Neurology, 2021, 78, 217.                          | 9.0 | 27        |
| 54 | Contributions of imprecision in <scp>PET</scp> â€ <scp>MRI</scp> rigid registration to imprecision in amyloid <scp>PET</scp> measurements. Human Brain Mapping, 2017, 38, 3323-3336.                                     | 3.6 | 26        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Selecting software pipelines for change in flortaucipir SUVR: Balancing repeatability and group separation. NeuroImage, 2021, 238, 118259.                                                                                | 4.2 | 24        |
| 56 | Role of Î <sup>2</sup> -Amyloidosis and Neurodegeneration in Subsequent Imaging Changes in Mild Cognitive<br>Impairment. JAMA Neurology, 2015, 72, 1475.                                                                  | 9.0 | 23        |
| 57 | Age and neurodegeneration imaging biomarkers in persons with Alzheimer disease dementia.<br>Neurology, 2016, 87, 691-698.                                                                                                 | 1.1 | 22        |
| 58 | Tracking the development of agrammatic aphasia: A tensor-based morphometry study. Cortex, 2017, 90, 138-148.                                                                                                              | 2.4 | 22        |
| 59 | Association of Longitudinal β-Amyloid Accumulation Determined by Positron Emission Tomography<br>With Clinical and Cognitive Decline in Adults With Probable Lewy Body Dementia. JAMA Network Open,<br>2019, 2, e1916439. | 5.9 | 22        |
| 60 | Development, validation, qualification, and dissemination of quantitative MR methods: Overview and recommendations by the ISMRM quantitative MR study group. Magnetic Resonance in Medicine, 2022, 87, 1184-1206.         | 3.0 | 21        |
| 61 | Evolution of neurodegeneration-imaging biomarkers from clinically normal to dementia in the Alzheimer disease spectrum. Neurobiology of Aging, 2016, 46, 32-42.                                                           | 3.1 | 20        |
| 62 | Microbleeds in Atypical Presentations of Alzheimer's Disease: A Comparison to Dementia of the<br>Alzheimer's Type. Journal of Alzheimer's Disease, 2015, 45, 1109-1117.                                                   | 2.6 | 19        |
| 63 | Cerebrospinal fluid dynamics disorders. Neurology, 2019, 93, e2237-e2246.                                                                                                                                                 | 1.1 | 19        |
| 64 | Linear vs volume measures of ventricle size. Neurology, 2020, 94, e549-e556.                                                                                                                                              | 1.1 | 19        |
| 65 | Frontal lobe <sup>1</sup> H MR spectroscopy in asymptomatic and symptomatic <i>MAPT</i> mutation carriers. Neurology, 2019, 93, e758-e765.                                                                                | 1.1 | 18        |
| 66 | 18F-fluorodeoxyglucose positron emission tomography in dementia with Lewy bodies. Brain<br>Communications, 2020, 2, fcaa040.                                                                                              | 3.3 | 17        |
| 67 | Imaging Biomarkers of Alzheimer Disease in Multiple Sclerosis. Annals of Neurology, 2020, 87, 556-567.                                                                                                                    | 5.3 | 17        |
| 68 | Relationships between β-amyloid and tau in an elderly population: An accelerated failure time model.<br>Neurolmage, 2021, 242, 118440.                                                                                    | 4.2 | 15        |
| 69 | Longitudinal atrophy in prodromal dementia with Lewy bodies points to cholinergic degeneration.<br>Brain Communications, 2022, 4, fcac013.                                                                                | 3.3 | 15        |
| 70 | β-Amyloid PET and <sup>123</sup> I-FP-CIT SPECT in Mild Cognitive Impairment at Risk for Lewy Body<br>Dementia. Neurology, 2021, 96, .                                                                                    | 1.1 | 13        |
| 71 | MRI quantitative susceptibility mapping of the substantia nigra as an early biomarker for Lewy body disease. Journal of Neuroimaging, 2021, 31, 1020-1027.                                                                | 2.0 | 13        |
| 72 | Neural correlates of domain-specific cognitive decline. Neurology, 2019, 92, e1051-e1063.                                                                                                                                 | 1.1 | 12        |

5

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Long-term associations between amyloid positron emission tomography, sex, apolipoprotein E and<br>incident dementia and mortality among individuals without dementia: hazard ratios and absolute risk.<br>Brain Communications, 2022, 4, fcac017. | 3.3 | 12        |
| 74 | Does MRI scan acceleration affect power to track brain change?. Neurobiology of Aging, 2015, 36, S167-S177.                                                                                                                                       | 3.1 | 10        |
| 75 | Sample size calculations for clinical trials targeting tauopathies: a new potential disease target.<br>Journal of Neurology, 2015, 262, 2064-2072.                                                                                                | 3.6 | 10        |
| 76 | Considerations for Performing Level-2 Centiloid Transformations for Amyloid PET SUVR values.<br>Scientific Reports, 2018, 8, 7421.                                                                                                                | 3.3 | 9         |
| 77 | Brain MR Spectroscopy Changes Precede Frontotemporal Lobar Degeneration Phenoconversion in<br>Mapt Mutation Carriers. Journal of Neuroimaging, 2019, 29, 624-629.                                                                                 | 2.0 | 9         |
| 78 | Cerebral Microbleeds. Stroke, 2021, 52, 2347-2355.                                                                                                                                                                                                | 2.0 | 9         |
| 79 | Cerebrospinal Fluid Dynamics and Discordant Amyloid Biomarkers. Neurobiology of Aging, 2021, 110, 27-36.                                                                                                                                          | 3.1 | 7         |
| 80 | CSF dynamics disorders: Association of brain MRI and nuclear medicine cisternogram findings.<br>NeuroImage: Clinical, 2020, 28, 102481.                                                                                                           | 2.7 | 5         |
| 81 | CSF dynamics as a predictor of cognitive progression. NeuroImage, 2021, 232, 117899.                                                                                                                                                              | 4.2 | 3         |
| 82 | Left–Right Intensity Asymmetries Vary Depending on Scanner Model for FLAIR and T 1 Weighted MRI<br>Images. Journal of Magnetic Resonance Imaging, 2022, , .                                                                                       | 3.4 | 3         |
| 83 | Changes in Ventricular and Cortical Volumes following Shunt Placement in Patients with Idiopathic<br>Normal Pressure Hydrocephalus, American Journal of Neuroradiology, 2021                                                                      | 2.4 | 2         |