
Lihua Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1347230/publications.pdf Version: 2024-02-01

Гінна Ім

#	Article	IF	CITATIONS
1	Electrolyte Modulators toward Polarizationâ€Mitigated Lithiumâ€Ion Batteries for Sustainable Electric Transportation. Advanced Materials, 2022, 34, e2107787.	21.0	15
2	Photodriven Self-Excited Hydrogel Oscillators. Physical Review Applied, 2022, 17, .	3.8	5
3	Harnessing Friction in Intertwined Structures for Highâ€Capacity Reusable Energyâ€Absorbing Architected Materials. Advanced Science, 2022, 9, e2105769.	11.2	13
4	Formation of rolls from liquid crystal elastomer bistrips. Soft Matter, 2022, 18, 4077-4089.	2.7	2
5	Spatiotemporally Programmable Surfaces via Viscoelastic Shell Snapping. Advanced Intelligent Systems, 2022, 4, .	6.1	10
6	Directly Probing the Fracture Behavior of Ultrathin Polymeric Films. ACS Polymers Au, 2021, 1, 16-29.	4.1	16
7	Reusable Energyâ€Absorbing Architected Materials Harnessing Snappingâ€Back Buckling of Wide Hyperelastic Columns. Advanced Functional Materials, 2021, 31, 2102113.	14.9	26
8	Effect of imperfections on pseudo-bistability of viscoelastic domes. Extreme Mechanics Letters, 2021, 49, 101477.	4.1	7
9	Unusual stress and strain concentration behaviors at the circular hole of a large monodomain liquid crystal elastomer sheet. Journal of the Mechanics and Physics of Solids, 2021, 156, 104615.	4.8	9
10	A stretchable and strain-unperturbed pressure sensor for motion interference–free tactile monitoring on skins. Science Advances, 2021, 7, eabi4563.	10.3	136
11	Snapping-back buckling of wide hyperelastic columns. Extreme Mechanics Letters, 2020, 34, 100600.	4.1	18
12	Dynamic Ag–N Bond Enhanced Stretchable Conductor for Transparent and Self-Healing Electronic Skin. ACS Applied Materials & Interfaces, 2020, 12, 1486-1494.	8.0	53
13	From continuous to snapping-back buckling: A post-buckling analysis for hyperelastic columns under axial compression. International Journal of Non-Linear Mechanics, 2020, 125, 103532.	2.6	13
14	Blueprinting Photothermal Shapeâ€Morphing of Liquid Crystal Elastomers. Advanced Materials, 2020, 32, e2000609.	21.0	110
15	Hydrolysis-induced large swelling of polyacrylamide hydrogels. Soft Matter, 2020, 16, 5740-5749.	2.7	16
16	Granular Metamaterials: Programmable Granular Metamaterials for Reusable Energy Absorption (Adv.) Tj ETQq0 () 0 rg₿T /0 1499	Overlock 10 -

17	Realâ€Time Quantification of Cell Internalization Kinetics by Functionalized Bioluminescent Nanoprobes. Advanced Materials, 2019, 31, e1902469.	21.0	10
18	Soft phototactic swimmer based on self-sustained hydrogel oscillator. Science Robotics, 2019, 4, .	17.6	258

Lihua Jin

#	Article	IF	CITATIONS
19	Programmable Granular Metamaterials for Reusable Energy Absorption. Advanced Functional Materials, 2019, 29, 1901258.	14.9	44
20	Elastocapillary Crease. Physical Review Letters, 2019, 122, 098003.	7.8	18
21	Characterization of perfused and sectioned liver tissue in a full indentation cycle using a visco-hyperelastic model. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 591-603.	3.1	8
22	Concurrent reaction and diffusion in photo-responsive hydrogels. Journal of the Mechanics and Physics of Solids, 2019, 124, 599-611.	4.8	17
23	Geometric role in designing pneumatically actuated pattern-transforming metamaterials. Extreme Mechanics Letters, 2018, 23, 55-66.	4.1	21
24	Creasing in evaporation-driven cavity collapse. Soft Matter, 2017, 13, 6894-6904.	2.7	18
25	Coassembly Kinetics of Graphene Oxide and Block Copolymers at the Water/Oil Interface. Langmuir, 2017, 33, 8961-8969.	3.5	20
26	Pattern formation in plastic liquid films on elastomers by ratcheting. Soft Matter, 2016, 12, 3820-3827.	2.7	10
27	Phase-transforming and switchable metamaterials. Extreme Mechanics Letters, 2016, 6, 1-9.	4.1	77
28	Syringe-injectable electronics. Nature Nanotechnology, 2015, 10, 629-636.	31.5	543
29	Smoothening creases on surfaces of strain-stiffening materials. Journal of the Mechanics and Physics of Solids, 2015, 74, 68-79.	4.8	33
30	Controlled formation and disappearance of creases. Materials Horizons, 2014, 1, 207-213.	12.2	32
31	Creases on the interface between two soft materials. Soft Matter, 2014, 10, 303-311.	2.7	32
32	Robotic Tentacles with Threeâ€Dimensional Mobility Based on Flexible Elastomers. Advanced Materials, 2013, 25, 205-212.	21.0	580
33	Measuring the elastic modulus of microgels using microdrops. Soft Matter, 2012, 8, 10032.	2.7	18
34	Creases in soft tissues generated by growth. Europhysics Letters, 2011, 95, 64002.	2.0	74
35	Thermomechanical modeling of the thermo-order–mechanical coupling behaviors in liquid crystal elastomers. Journal of the Mechanics and Physics of Solids, 2010, 58, 1907-1927.	4.8	39