Hans Demmelmair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1347036/publications.pdf

Version: 2024-02-01

69 4,432 33
papers citations h-index

33 66
h-index g-index

102304

69 69 docs citations

69 times ranked 5515 citing authors

#	Article	IF	CITATIONS
1	Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. American Journal of Clinical Nutrition, 2009, 89, 1836-1845.	2.2	57 5
2	Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Human Molecular Genetics, 2006, 15, 1745-1756.	1.4	489
3	Can infant feeding choices modulate later obesity risk?. American Journal of Clinical Nutrition, 2009, 89, 1502S-1508S.	2.2	275
4	Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. American Journal of Clinical Nutrition, 2011, 94, S1776-S1784.	2.2	208
5	Physiological aspects of human milk lipids. Early Human Development, 2001, 65, S3-S18.	0.8	200
6	Effects of fish-oil and folate supplementation of pregnant women on maternal and fetal plasma concentrations of docosahexaenoic acid and eicosapentaenoic acid: a European randomized multicenter trial. American Journal of Clinical Nutrition, 2007, 85, 1392-1400.	2.2	182
7	Docosahexaenoic acid transfer into human milk after dietary supplementation: a randomized clinical trial. Journal of Lipid Research, 2000, 41, 1376-1383.	2.0	148
8	Lipids in human milk. Best Practice and Research in Clinical Endocrinology and Metabolism, 2018, 32, 57-68.	2.2	118
9	Protein Intake in the First Year of Life: A Risk Factor for Later Obesity?. Advances in Experimental Medicine and Biology, 2005, 569, 69-79.	0.8	114
10	Contribution of dietary and newly formed arachidonic acid to human milk lipids in women eating a low-fat diet. American Journal of Clinical Nutrition, 2001, 74, 242-247.	2,2	113
11	Benefits of Lactoferrin, Osteopontin and Milk Fat Globule Membranes for Infants. Nutrients, 2017, 9, 817.	1.7	109
12	Nutrition and neurodevelopment in children: focus on NUTRIMENTHE project. European Journal of Nutrition, 2013, 52, 1825-1842.	1.8	103
13	Should formula for infants provide arachidonic acid along with DHA? A position paper of the European Academy of Paediatrics and the Child Health Foundation. American Journal of Clinical Nutrition, 2020, 111, 10-16.	2.2	88
14	Long-term consequences of early nutrition. Early Human Development, 2006, 82, 567-574.	0.8	87
15	High-throughput analysis of fatty acid composition of plasma glycerophospholipids. Journal of Lipid Research, 2010, 51, 216-221.	2.0	82
16	Metabolism of 13C-Labeled Linoleic Acid in Newborn Infants During the First Week of Life. Pediatric Research, 1999, 45, 669-673.	1.1	80
17	Maternal plasma PUFA concentrations during pregnancy and childhood adiposity: the Generation R Study. American Journal of Clinical Nutrition, 2016, 103, 1017-1025.	2.2	79
18	Maternal BMI and gestational diabetes alter placental lipid transporters and fatty acid composition. Placenta, 2017, 57, 144-151.	0.7	76

#	Article	IF	Citations
19	Dietary Protein Intake Affects Amino Acid and Acylcarnitine Metabolism in Infants Aged 6 Months. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 149-158.	1.8	7 5
20	Effect of Fish Oil Supplementation on Fatty Acid Status, Coordination, and Fine Motor Skills in Children with Phenylketonuria. Journal of Pediatrics, 2007, 150, 479-484.	0.9	72
21	<i>FADS1</i> and <i>FADS2</i> Polymorphisms Modulate Fatty Acid Metabolism and Dietary Impact on Health. Annual Review of Nutrition, 2019, 39, 21-44.	4.3	72
22	Placental Fatty Acid Transfer: A Key Factor in Fetal Growth. Annals of Nutrition and Metabolism, 2014, 64, 247-253.	1.0	71
23	High protein intake in young children and increased weight gain and obesity risk. American Journal of Clinical Nutrition, 2016, 103, 303-304.	2.2	68
24	Infant formula composition affects energetic efficiency for growth: The BeMIM study, a randomized controlled trial. Clinical Nutrition, 2014, 33, 588-595.	2.3	59
25	Maternal Pre-Pregnancy Obesity Is Associated with Altered Placental Transcriptome. PLoS ONE, 2017, 12, e0169223.	1.1	57
26	Effect of fatty acid status in cord blood serum on children's behavioral difficulties at 10 y of age: results from the LISAplus Study. American Journal of Clinical Nutrition, 2011, 94, 1592-1599.	2.2	51
27	Maternal and Perinatal Factors Associated with the Human Milk Microbiome. Current Developments in Nutrition, 2020, 4, nzaa027.	0.1	51
28	Variation of Metabolite and Hormone Contents in Human Milk. Clinics in Perinatology, 2017, 44, 151-164.	0.8	50
29	Fatty fish intake and cognitive function: FINS-KIDS, a randomized controlled trial in preschool children. BMC Medicine, 2018, 16, 41.	2.3	42
30	Effects of obesity and gestational diabetes mellitus on placental phospholipids. Diabetes Research and Clinical Practice, 2015, 109, 364-371.	1.1	39
31	Optimized protein intakes in term infants support physiological growth and promote long-term health. Seminars in Perinatology, 2019, 43, 151153.	1.1	38
32	Maternal single nucleotide polymorphisms in the fatty acid desaturase 1 and 2 coding regions modify the impact of prenatal supplementation with DHA on birth weight. American Journal of Clinical Nutrition, 2016, 103, 1171-1178.	2.2	36
33	Omegaâ€3 LCâ€PUFA Supply and Neurological Outcomes in Children With Phenylketonuria (PKU). Journal of Pediatric Gastroenterology and Nutrition, 2009, 48, S2-7.	0.9	35
34	The impact of human breast milk components on the infant metabolism. PLoS ONE, 2018, 13, e0197713.	1.1	35
35	Importance of Fatty Acids in the Perinatal Period. World Review of Nutrition and Dietetics, 2015, 112, 31-47.	0.1	31
36	Phospholipid Species in Newborn and 4 Month Old Infants after Consumption of Different Formulas or Breast Milk. PLoS ONE, 2016, 11, e0162040.	1.1	31

#	Article	IF	Citations
37	Excessive Weight Gain during Full Breast-Feeding. Annals of Nutrition and Metabolism, 2014, 64, 271-275.	1.0	29
38	Maternal plasma n-3 and n-6 polyunsaturated fatty acids during pregnancy and features of fetal health: Fetal growth velocity, birth weight and duration of pregnancy. Clinical Nutrition, 2018, 37, 1367-1374.	2.3	29
39	Effects of fish oil supplementation on the fatty acid profile in erythrocyte membrane and plasma phospholipids of pregnant women and their offspring: a randomised controlled trial. British Journal of Nutrition, 2013, 109, 1647-1656.	1.2	26
40	Role of selected amino acids on plasma IGF-I concentration in infants. European Journal of Nutrition, 2017, 56, 613-620.	1.8	23
41	Human lactation: oxidation and maternal transfer of dietary ¹³ C-labelled <i>α</i> linolenic acid into human milk. Isotopes in Environmental and Health Studies, 2016, 52, 270-280.	0.5	21
42	Effect of Different Levels of Docosahexaenoic Acid Supply on Fatty Acid Status and Linoleic and αâ€Linolenic Acid Conversion in Preterm Infants. Journal of Pediatric Gastroenterology and Nutrition, 2012, 54, 353-363.	0.9	20
43	Variation and Interdependencies of Human Milk Macronutrients, Fatty Acids, Adiponectin, Insulin, and IGF-II in the European PreventCD Cohort. Nutrients, 2019, 11, 2034.	1.7	20
44	Fatty Acid Composition of Serum Glycerophospholipids in Children. Journal of Pediatrics, 2010, 157, 826-831.e1.	0.9	19
45	<i>In vivo</i> kinetic study of maternoâ€fetal fatty acid transfer in obese and normal weight pregnant women. Journal of Physiology, 2019, 597, 4959-4973.	1.3	18
46	Fatty Acid Status Determination by Cheek Cell Sampling Combined with Methanolâ€Based Ultrasound Extraction of Glycerophospholipids. Lipids, 2011, 46, 981-990.	0.7	17
47	Age-dependent effects of cord blood long-chain PUFA composition on BMI during the first 10 years of life. British Journal of Nutrition, 2014, 111, 2024-2031.	1.2	17
48	Phospholipids in lipoproteins: compositional differences across VLDL, LDL, and HDL in pregnant women. Lipids in Health and Disease, 2019, 18, 20.	1.2	17
49	Vitamin E Content and Estimated Need in German Infant and Follow-On Formulas With and Without Long-Chain Polyunsaturated Fatty Acids (LC-PUFA) Enrichment. Journal of Agricultural and Food Chemistry, 2014, 62, 10153-10161.	2.4	14
50	The effect of Atlantic salmon consumption on the cognitive performance of preschool children – A randomized controlled trial. Clinical Nutrition, 2019, 38, 2558-2568.	2.3	14
51	Determinants of Plasma Docosahexaenoic Acid Levels and Their Relationship to Neurological and Cognitive Functions in PKU Patients: A Double Blind Randomized Supplementation Study. Nutrients, 2018, 10, 1944.	1.7	12
52	Association of infant formula composition and anthropometry at 4 years: Follow-up of a randomized controlled trial (BeMIM study). PLoS ONE, 2018, 13, e0199859.	1.1	12
53	[13C]Linoleic acid oxidation and transfer into milk in stunted lactating women with contrasting body mass indexes. American Journal of Clinical Nutrition, 2001, 74, 827-832.	2.2	11
54	Multiple Micronutrients, Lutein, and Docosahexaenoic Acid Supplementation during Lactation: A Randomized Controlled Trial. Nutrients, 2020, 12, 3849.	1.7	11

#	Article	IF	CITATIONS
55	The association of fatty acid desaturase gene polymorphisms on long-chain polyunsaturated fatty acid composition in Indonesian infants. American Journal of Clinical Nutrition, 2018, 108, 1135-1144.	2.2	10
56	Maternal plasma nâ \in 3 and nâ \in 6 polyunsaturated fatty acid concentrations during pregnancy and subcutaneous fat mass in infancy. Obesity, 2016, 24, 1759-1766.	1.5	7
57	Study protocol to investigate the environmental and genetic aetiology of atopic dermatitis: the Indonesian Prospective Study of Atopic Dermatitis in Infants (ISADI). BMJ Open, 2017, 7, e012475.	0.8	7
58	Impact of Treatment with RUTF on Plasma Lipid Profiles of Severely Malnourished Pakistani Children. Nutrients, 2020, 12, 2163.	1.7	7
59	Long-Chain Polyunsaturated Fatty Acids, Homocysteine at Birth and Fatty Acid Desaturase Gene Cluster Polymorphisms Are Associated with Children's Processing Speed up to Age 9 Years. Nutrients, 2021, 13, 131.	1.7	7
60	Total Fatty Acid and Polar Lipid Species Composition of Human Milk. Nutrients, 2022, 14, 158.	1.7	6
61	Perinatal Polyunsaturated Fatty Acid Status and Obesity Risk. Nutrients, 2021, 13, 3882.	1.7	4
62	Early nutrition in combination with polymorphisms in fatty acid desaturase gene cluster modulate fatty acid composition of cheek cells' glycerophospholipids in school-age children. British Journal of Nutrition, 2019, 122, S68-S79.	1.2	3
63	Infant Metabolome in Relation to Prenatal DHA Supplementation and Maternal Single-Nucleotide Polymorphism rs174602: Secondary Analysis of a Randomized Controlled Trial in Mexico. Journal of Nutrition, 2021, 151, 3339-3349.	1.3	3
64	Contribution of glycerophospholipids and sphingomyelin to the circulating NEFA. Prostaglandins Leukotrienes and Essential Fatty Acids, 2016, 110, 55-61.	1.0	2
65	Prolonged monitoring of postprandial lipid metabolism after a western meal rich in linoleic acid and carbohydrates. Applied Physiology, Nutrition and Metabolism, 2019, 44, 1189-1198.	0.9	2
66	Acute Metabolic Response in Adults to Toddler Milk Formulas with Alternating Higher and Lower Protein and Fat Contents, a Randomized Cross-Over Trial. Nutrients, 2021, 13, 3022.	1.7	2
67	Detailed knowledge of maternal and infant factors and human milk composition could inform recommendations for optimal composition. Acta Paediatrica, International Journal of Paediatrics, 2021, , .	0.7	2
68	Placental polar lipid composition is associated with placental gene expression and neonatal body composition. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158971.	1,2	1
69	In vivo kinetic study of the materno-fetal fatty acid transfer in obese and normal weight pregnant women. Proceedings of the Nutrition Society, 2020, 79, .	0.4	0