Gerald M Hart

List of Publications by Citations

Source: https://exaly.com/author-pdf/1346998/gerald-m-hart-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26,398 160 347 94 h-index g-index citations papers 8.2 28,979 370 7.34 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
347	Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. <i>Nature</i> , 2007 , 446, 1017-	23 0.4	1048
346	Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. <i>Annual Review of Biochemistry</i> , 2011 , 80, 825-58	29.1	882
345	Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. <i>Science</i> , 2001 , 291, 237	76 3 83.3	806
344	Symbol Nomenclature for Graphical Representations of Glycans. <i>Glycobiology</i> , 2015 , 25, 1323-4	5.8	585
343	The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 5735-9	11.5	582
342	Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. <i>Journal of Biological Chemistry</i> , 1997 , 272, 9308-15	5.4	568
341	O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 10804-9	11.5	547
340	Glycomics hits the big time. Cell, 2010, 143, 672-6	56.2	484
339	Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. <i>Journal of Biological Chemistry</i> , 2001 , 276, 9838-45	5.4	477
338	Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. <i>Annual Review of Biochemistry</i> , 1997 , 66, 315-35	29.1	446
337	Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. <i>Journal of Biological Chemistry</i> , 2004 , 279, 30133-42	5.4	416
336	Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 5313-8	11.5	389
335	Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. <i>Nature</i> , 2013 , 502, 372-6	50.4	382
334	A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. <i>Cell</i> , 1991 , 65, 1117-25	56.2	377
333	Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. <i>Molecular and Cellular Proteomics</i> , 2002 , 1, 791-804	7.6	341
332	Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. <i>Molecular and Cellular Biology</i> , 2004 , 24, 1680-90	4.8	334
331	Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. Journal of Biological Chemistry, 1999 , 274, 32015-22	5.4	323

(2001-1989)

330	A novel pathway for glycan assembly: biosynthesis of the glycosyl-phosphatidylinositol anchor of the trypanosome variant surface glycoprotein. <i>Cell</i> , 1989 , 56, 793-800	56.2	320
329	O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2004 , 1673, 13-28	4	319
328	O-GlcNAc signalling: implications for cancer cell biology. <i>Nature Reviews Cancer</i> , 2011 , 11, 678-84	31.3	311
327	O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2010 , 1800, 96-106	4	310
326	c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. <i>Journal of Biological Chemistry</i> , 1995 , 270, 18961-5	5.4	303
325	Cell signaling, the essential role of O-GlcNAc!. <i>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids</i> , 2006 , 1761, 599-617	5	295
324	O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. <i>Journal of Biological Chemistry</i> , 2000 , 275, 29179-82	5.4	289
323	Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 19915-20	11.5	275
322	O-GlcNAc signaling: a metabolic link between diabetes and cancer?. <i>Trends in Biochemical Sciences</i> , 2010 , 35, 547-55	10.3	262
321	The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. <i>Journal of Biological Chemistry</i> , 1996 , 271, 28741-4	5.4	253
320	Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 13793-8	11.5	252
319	The emerging significance of O-GlcNAc in cellular regulation. <i>Chemical Reviews</i> , 2002 , 102, 431-8	68.1	249
318	Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. <i>Cell Metabolism</i> , 2014 , 20, 208-13	24.6	245
317	Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine. <i>Analytical Biochemistry</i> , 2001 , 293, 169-77	3.1	243
316	The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. <i>Journal of Cell Science</i> , 2010 , 123, 13-22	5.3	237
315	Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 7280-5	11.5	234
314	Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. <i>Science Signaling</i> , 2010 , 3, ra2	8.8	231
313	Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II. <i>Biochemistry</i> , 2001 , 40, 7845-52	3.2	228

312	O-GlcNAc regulates FoxO activation in response to glucose. <i>Journal of Biological Chemistry</i> , 2008 , 283, 16283-92	5.4	224
311	Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. <i>Journal of Biological Chemistry</i> , 2005 , 280, 32944-56	5.4	218
310	Fatty acid remodeling: a novel reaction sequence in the biosynthesis of trypanosome glycosyl phosphatidylinositol membrane anchors. <i>Cell</i> , 1990 , 62, 73-80	56.2	217
309	Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. <i>Molecular and Cellular Proteomics</i> , 2010 , 9, 153-60	7.6	199
308	Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2008 , 295, E17-28	6	195
307	O-GlcNAc modification in diabetes and Alzheimer's disease. <i>Molecular BioSystems</i> , 2007 , 3, 766-72		195
306	O-GlcNAc profiling: from proteins to proteomes. <i>Clinical Proteomics</i> , 2014 , 11, 8	5	185
305	The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. <i>Molecular and Cellular Biology</i> , 2010 , 30, 5071-85	4.8	185
304	Cardioprotection by N-acetylglucosamine linkage to cellular proteins. <i>Circulation</i> , 2008 , 117, 1172-82	16.7	179
303	Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase, O-GlcNAcase. <i>Journal of Biological Chemistry</i> , 2002 , 277, 1755-61	5.4	176
302	Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. <i>Analytical Biochemistry</i> , 1996 , 234, 38-49	3.1	175
301	Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. <i>Biochemical Society Transactions</i> , 1992 , 20, 264-9	5.1	170
300	AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation. <i>Journal of Biological Chemistry</i> , 2008 , 283, 13009-20	5.4	164
299	O-GlcNAc: a regulatory post-translational modification. <i>Biochemical and Biophysical Research Communications</i> , 2003 , 302, 435-41	3.4	163
298	Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation. <i>Molecular and Cellular Proteomics</i> , 2007 , 6, 1365-79	7.6	162
297	Protein O-GlcNAcylation in diabetes and diabetic complications. <i>Expert Review of Proteomics</i> , 2013 , 10, 365-80	4.2	157
296	O-GlcNAc turns twenty: functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar. <i>FEBS Letters</i> , 2003 , 546, 154-8	3.8	155
295	Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens. <i>Journal of Biological Chemistry</i> , 2002 , 277, 19229-35	5.4	155

294	Dynamic O-GlcNAcylation of the small heat shock protein alpha B-crystallin. <i>Biochemistry</i> , 1996 , 35, 357	8386	155
293	Quantitative analysis of both protein expression and serine / threonine post-translational modifications through stable isotope labeling with dithiothreitol. <i>Proteomics</i> , 2005 , 5, 388-98	4.8	154
292	Nutrient regulation of signaling and transcription. <i>Journal of Biological Chemistry</i> , 2019 , 294, 2211-2231	5.4	153
291	Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta. <i>Biochemistry</i> , 2000 , 39, 11609-20	3.2	150
290	Updates to the Symbol Nomenclature for Glycans guidelines. <i>Glycobiology</i> , 2019 , 29, 620-624	5.8	148
289	Cytosolic O-glycosylation is abundant in nerve terminals. <i>Journal of Neurochemistry</i> , 2001 , 79, 1080-9	6	148
288	Symbol nomenclature for glycan representation. <i>Proteomics</i> , 2009 , 9, 5398-9	4.8	142
287	Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity. <i>Journal of Biological Chemistry</i> , 2003 , 278, 24608-16	5.4	140
286	Human Proteinpedia enables sharing of human protein data. <i>Nature Biotechnology</i> , 2008 , 26, 164-7	44.5	138
285	O-GlcNAc cycling: how a single sugar post-translational modification is changing the way we think about signaling networks. <i>Journal of Cellular Biochemistry</i> , 2006 , 97, 71-83	4.7	138
284	A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. <i>Journal of Biological Chemistry</i> , 2009 , 284, 5148-57	5.4	137
283	Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta: post-translational regulation of turnover and transactivation activity. <i>Journal of Biological Chemistry</i> , 2001 , 276, 10570-5	5.4	137
282	2000,		134
281	Glycosylation of chromosomal proteins: localization of O-linked N-acetylglucosamine in Drosophila chromatin. <i>Cell</i> , 1989 , 57, 243-51	56.2	131
280	The coactivator of transcription CREB-binding protein interacts preferentially with the glycosylated form of Stat5. <i>Journal of Biological Chemistry</i> , 2004 , 279, 3563-72	5.4	130
279	Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. <i>FEBS Letters</i> , 2010 , 584, 2526-38	3.8	129
278	A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. <i>Molecular Biology of the Cell</i> , 2008 , 19, 4130-40	3.5	129
277	The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells. <i>Archives of Biochemistry and Biophysics</i> , 2003 , 415, 155-63	4.1	129

276	Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 6050-5	11.5	126
275	Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). <i>Journal of Biological Chemistry</i> , 2014 , 289, 10592-10606	5.4	124
274	O-GlcNAcylation of key nuclear and cytoskeletal proteins: reciprocity with O-phosphorylation and putative roles in protein multimerization. <i>Glycobiology</i> , 1996 , 6, 711-6	5.8	123
273	Regulation of the O-linked beta-N-acetylglucosamine transferase by insulin signaling. <i>Journal of Biological Chemistry</i> , 2008 , 283, 21411-7	5.4	121
272	O-linked beta-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins. <i>Journal of Biological Chemistry</i> , 2008 , 283, 33935	- ā †	120
271	Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis. <i>Nature Chemical Biology</i> , 2012 , 8, 262-9	11.7	119
270	Detection of O-linked N-acetylglucosamine (O-GlcNAc) on cytoplasmic and nuclear proteins. <i>Methods in Enzymology</i> , 1994 , 230, 443-60	1.7	118
269	Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo. <i>Journal of Biological Chemistry</i> , 2012 , 287, 23549-61	5.4	117
268	Dynamic interplay between O-GlcNAc and O-phosphate: the sweet side of protein regulation. Current Opinion in Structural Biology, 2003 , 13, 631-6	8.1	117
267	Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNAc transferase. <i>Journal of Biological Chemistry</i> , 2003 , 278, 5399-409	5.4	117
266	Diverse regulation of protein function by O-GlcNAc: a nuclear and cytoplasmic carbohydrate post-translational modification. <i>Current Opinion in Chemical Biology</i> , 2002 , 6, 851-7	9.7	115
265	Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked beta-N-acetylglucosamine in 3T3-L1 adipocytes. <i>Journal of Biological Chemistry</i> , 2010 , 285, 520	o4:41	110
264	Site-specific GlcNAcylation of human erythrocyte proteins: potential biomarker(s) for diabetes. <i>Diabetes</i> , 2009 , 58, 309-17	0.9	108
263	Proteomic approaches to analyze the dynamic relationships between nucleocytoplasmic protein glycosylation and phosphorylation. <i>Circulation Research</i> , 2003 , 93, 1047-58	15.7	107
262	O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits. Journal of Biological Chemistry, 2004 , 279, 38466-70	5.4	106
261	Regulation of calcium/calmodulin-dependent kinase IV by O-GlcNAc modification. <i>Journal of Biological Chemistry</i> , 2009 , 284, 21327-37	5.4	103
260	O-linked GlcNAc modification of cardiac myofilament proteins: a novel regulator of myocardial contractile function. <i>Circulation Research</i> , 2008 , 103, 1354-8	15.7	103
259	O-Linked N-Acetylglucosamine: The Vin-Yanglof Ser/Thr Phosphorylation?. <i>Advances in Experimental Medicine and Biology</i> , 1995 , 115-123	3.6	103

258	Aberrant O-GlcNAcylation characterizes chronic lymphocytic leukemia. <i>Leukemia</i> , 2010 , 24, 1588-98	10.7	98
257	O-GlcNAc transferase regulates mitotic chromatin dynamics. <i>Journal of Biological Chemistry</i> , 2010 , 285, 34460-8	5.4	96
256	Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: a new paradigm for metabolic control of signal transduction and transcription. <i>Progress in Molecular Biology and Translational Science</i> , 2003 , 73, 107-36		96
255	Nuclear and cytoplasmic glycosylation: novel saccharide linkages in unexpected places. <i>Trends in Biochemical Sciences</i> , 1988 , 13, 380-4	10.3	96
254	The nutrient sensor OGT in PVN neurons regulates feeding. <i>Science</i> , 2016 , 351, 1293-6	33.3	87
253	Roles of O-GlcNAc in chronic diseases of aging. <i>Molecular Aspects of Medicine</i> , 2016 , 51, 1-15	16.7	86
252	Glycosylation sites flank phosphorylation sites on synapsin I: O-linked N-acetylglucosamine residues are localized within domains mediating synapsin I interactions. <i>Journal of Neurochemistry</i> , 1999 , 73, 418	-28	85
251	Cytoplasmic O-GlcNAc modification of the head domain and the KSP repeat motif of the neurofilament protein neurofilament-H. <i>Journal of Biological Chemistry</i> , 1996 , 271, 20845-52	5.4	85
250	Quantitation of picomole levels of N-acetyl- and N-glycolylneuraminic acids by a HPLC-adaptation of the thiobarbituric acid assay. <i>Analytical Biochemistry</i> , 1986 , 157, 179-85	3.1	85
249	The dynamic stress-induced "O-GlcNAc-ome" highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways. <i>Amino Acids</i> , 2011 , 40, 793-808	3.5	84
248	O-GlcNAc cycling enzymes associate with the translational machinery and modify core ribosomal proteins. <i>Molecular Biology of the Cell</i> , 2010 , 21, 1922-36	3.5	83
247	O-GlcNAc modification: a nutritional sensor that modulates proteasome function. <i>Trends in Cell Biology</i> , 2004 , 14, 218-21	18.3	83
246	Posttranslational, reversible O-glycosylation is stimulated by high glucose and mediates plasminogen activator inhibitor-1 gene expression and Sp1 transcriptional activity in glomerular mesangial cells. <i>Endocrinology</i> , 2006 , 147, 222-31	4.8	8o
245	dbOGAP - an integrated bioinformatics resource for protein O-GlcNAcylation. <i>BMC Bioinformatics</i> , 2011 , 12, 91	3.6	79
244	Characterization of beta-N-acetylglucosaminidase cleavage by caspase-3 during apoptosis. <i>Journal of Biological Chemistry</i> , 2008 , 283, 23557-66	5.4	79
243	Three Decades of Research on O-GlcNAcylation - A Major Nutrient Sensor That Regulates Signaling, Transcription and Cellular Metabolism. <i>Frontiers in Endocrinology</i> , 2014 , 5, 183	5.7	78
242	Elevation of the post-translational modification of proteins by O-linked N-acetylglucosamine leads to deterioration of the glucose-stimulated insulin secretion in the pancreas of diabetic Goto-Kakizaki rats. <i>Glycobiology</i> , 2007 , 17, 127-40	5.8	73
241	Localization of the O-GlcNAc transferase and O-GlcNAc-modified proteins in rat cerebellar cortex. Brain Research, 2003, 966, 194-205	3.7	73

240	GlyTouCan 1.0The international glycan structure repository. Nucleic Acids Research, 2016, 44, D1237-4	2 20.1	72
239	The dynamic metabolism of hyaluronan regulates the cytosolic concentration of UDP-GlcNAc. <i>Matrix Biology</i> , 2014 , 35, 14-7	11.4	72
238	Nucleocytoplasmic O-glycosylation: O-GlcNAc and functional proteomics. <i>Biochimie</i> , 2001 , 83, 575-81	4.6	72
237	Modification of RelA by O-linked N-acetylglucosamine links glucose metabolism to NF- B acetylation and transcription. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 16888-93	11.5	71
236	Removal of Abnormal Myofilament O-GlcNAcylation Restores Ca2+ Sensitivity in Diabetic Cardiac Muscle. <i>Diabetes</i> , 2015 , 64, 3573-87	0.9	68
235	Dynamic nuclear and cytoplasmic glycosylation: enzymes of O-GlcNAc cycling. <i>Biochemistry</i> , 2003 , 42, 2493-9	3.2	68
234	New insights: A role for O-GlcNAcylation in diabetic complications. <i>Critical Reviews in Biochemistry and Molecular Biology</i> , 2016 , 51, 150-61	8.7	65
233	A subpopulation of estrogen receptors are modified by O-linked N-acetylglucosamine. <i>Journal of Biological Chemistry</i> , 1997 , 272, 2421-8	5.4	63
232	O-GlcNAcylation of kinases. <i>Biochemical and Biophysical Research Communications</i> , 2012 , 422, 224-8	3.4	61
231	Hyperglycemia and the O-GlcNAc transferase in rat aortic smooth muscle cells: elevated expression and altered patterns of O-GlcNAcylation. <i>Archives of Biochemistry and Biophysics</i> , 2001 , 389, 166-75	4.1	60
230	O-GlcNAcomic Profiling Identifies Widespread O-Linked EN-Acetylglucosamine Modification (O-GlcNAcylation) in Oxidative Phosphorylation System Regulating Cardiac Mitochondrial Function. <i>Journal of Biological Chemistry</i> , 2015 , 290, 29141-53	5.4	58
229	O-linked N-acetylglucosamine and cancer: messages from the glycosylation of c-Myc. <i>Advances in Experimental Medicine and Biology</i> , 2001 , 491, 413-8	3.6	58
228	O-linked N-acetylglucosamine modification on CCAAT enhancer-binding protein beta: role during adipocyte differentiation. <i>Journal of Biological Chemistry</i> , 2009 , 284, 19248-54	5.4	57
227	Localization of the O-linked N-acetylglucosamine transferase in rat pancreas. <i>Diabetes</i> , 1999 , 48, 2407-	13.9	57
226	Heparan sulfate biosynthesis by embryonic tissues and primary fibroblast populations. <i>Developmental Biology</i> , 1975 , 44, 253-69	3.1	57
225	Nuclear and cytoplasmic glycosylation. <i>International Review of Cytology</i> , 1998 , 181, 43-74		56
224	Streptozotocin-induced beta-cell death is independent of its inhibition of O-GlcNAcase in pancreatic Min6 cells. <i>Archives of Biochemistry and Biophysics</i> , 2000 , 383, 296-302	4.1	55
223	Cellular content of UDP-N-acetylhexosamines controls hyaluronan synthase 2 expression and correlates with O-linked N-acetylglucosamine modification of transcription factors YY1 and SP1. <i>Journal of Biological Chemistry</i> , 2011 , 286, 33632-40	5.4	53

(2011-2016)

222	Comparative Proteomics Reveals Dysregulated Mitochondrial O-GlcNAcylation in Diabetic Hearts. Journal of Proteome Research, 2016 , 15, 2254-64	5.6	52
221	Increased expression of beta-N-acetylglucosaminidase in erythrocytes from individuals with pre-diabetes and diabetes. <i>Diabetes</i> , 2010 , 59, 1845-50	0.9	50
220	Chemical approaches to study O-GlcNAcylation. <i>Chemical Society Reviews</i> , 2013 , 42, 4345-57	58.5	49
219	A glycolipid from Trypanosoma brucei related to the variant surface glycoprotein membrane anchor. <i>Molecular and Biochemical Parasitology</i> , 1989 , 36, 263-70	1.9	48
218	Increased O-GlcNAc transferase in pancreas of rats with streptozotocin-induced diabetes. <i>Diabetologia</i> , 2000 , 43, 1239-47	10.3	46
217	Biosynthesis of glycosaminoglycans by the separated tissues of the embryonic chick cornea. <i>Developmental Biology</i> , 1978 , 62, 78-98	3.1	46
216	The role of O-GlcNAc signaling in the pathogenesis of diabetic retinopathy. <i>Proteomics - Clinical Applications</i> , 2014 , 8, 218-31	3.1	42
215	O-GlcNAc modification of nucleocytoplasmic proteins and diabetes. <i>Medical Molecular Morphology</i> , 2005 , 38, 84-91	2.3	42
214	Nutrient regulation of gene expression by O-GlcNAcylation of chromatin. <i>Current Opinion in Chemical Biology</i> , 2016 , 33, 88-94	9.7	41
213	Glycosylation of the murine estrogen receptor-alpha. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 2000 , 75, 147-58	5.1	41
212	O-GlcNAc transferase regulates excitatory synapse maturity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 1684-1689	11.5	40
211	Minireview series on the thirtieth anniversary of research on O-GlcNAcylation of nuclear and cytoplasmic proteins: Nutrient regulation of cellular metabolism and physiology by O-GlcNAcylation. <i>Journal of Biological Chemistry</i> , 2014 , 289, 34422-3	5.4	37
210	Detection and analysis of proteins modified by O-linked N-acetylglucosamine. <i>Current Protocols in Protein Science</i> , 2011 , Chapter 12, Unit12.8	3.1	37
209	Biosynthesis of glycosaminoglycans by thymic lymphocytes. Effects of mitogenic activation. <i>Biochemistry</i> , 1982 , 21, 6088-96	3.2	36
208	Detection and analysis of proteins modified by O-linked N-acetylglucosamine. <i>Current Protocols in Molecular Biology</i> , 2011 , Chapter 17, Unit 17.6	2.9	34
207	Identification of O-GlcNAc sites on proteins. <i>Methods in Enzymology</i> , 2006 , 415, 113-33	1.7	34
206	Topology of O-linked N-acetylglucosamine in murine lymphocytes. <i>Archives of Biochemistry and Biophysics</i> , 1991 , 290, 543-8	4.1	34
205	The E2F-1 associated retinoblastoma-susceptibility gene product is modified by O-GlcNAc. <i>Amino Acids</i> , 2011 , 40, 877-83	3.5	33

204	Trichloroacetimidates5-59		33
203	Novel forms of protein glycosylation. <i>Current Opinion in Structural Biology</i> , 1994 , 4, 692-696	8.1	32
202	O-GlcNAcomicsRevealing roles of O-GlcNAcylation in disease mechanisms and development of potential diagnostics. <i>Proteomics - Clinical Applications</i> , 2013 , 7, 597-606	3.1	31
201	Glycosyltransferase probes. <i>Methods in Enzymology</i> , 1989 , 179, 82-95	1.7	31
200	Extracellular collagenase, proteoglycanase and products of their activity, released in organ culture by intact dermal inflammatory lesions produced by sulfur mustard. <i>Journal of Investigative Dermatology</i> , 1990 , 95, 717-26	4.3	29
199	Training the next generation of biomedical investigators in glycosciences. <i>Journal of Clinical Investigation</i> , 2016 , 126, 405-8	15.9	29
198	Morphological changes in diabetic kidney are associated with increased O-GlcNAcylation of cytoskeletal proteins including ⊞ctinin 4. <i>Clinical Proteomics</i> , 2011 , 8, 15	5	28
197	Fucosyltransferases in Schistosoma mansoni development. <i>Glycobiology</i> , 2001 , 11, 249-59	5.8	25
196	Surfaces of murine lymphocyte subsets differ in sialylation states and antigen distribution of a major N-linked penultimate saccharide structure. <i>Cellular Immunology</i> , 1990 , 125, 337-53	4.4	24
195	Glycomic Approaches to Study GlcNAcylation: Protein Identification, Site-mapping, and Site-specific O-GlcNAc Quantitation. <i>Clinical Proteomics</i> , 2008 , 4, 5-13	5	23
194	Thioglycosides93-116		23
193	Sialyltransferases as specific cell surface probes of terminal and penultimate saccharide structures on living cells. <i>Analytical Biochemistry</i> , 1987 , 163, 123-35	3.1	22
192	Nucleocytoplasmic glycosylation, O-GlcNAc: identification and site mapping. <i>Methods in Molecular Biology</i> , 2004 , 284, 175-94	1.4	21
191	Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. <i>Chemical Reviews</i> , 2021 , 121, 1513	s-6 5 81	21
190	Analytical methods for the study of O-GlcNAc glycoproteins and glycopeptides. <i>Methods in Molecular Biology</i> , 1998 , 76, 19-33	1.4	20
189	Biochemistry of Sialic Acid Diversity227-243		19
188	Analysis of Protein O-GlcNAcylation by Mass Spectrometry. <i>Current Protocols in Protein Science</i> , 2017 , 87, 24.10.1-24.10.16	3.1	18
187	O-GlcNAc Site Mapping by Using a Combination of Chemoenzymatic Labeling, Copper-Free Click Chemistry, Reductive Cleavage, and Electron-Transfer Dissociation Mass Spectrometry. <i>Analytical Chemistry</i> , 2019 , 91, 2620-2625	7.8	17

(2021-2008)

186	Two-dimensional gel-based approaches for the assessment of N-Linked and O-GlcNAc glycosylation in human and simian immunodeficiency viruses. <i>Proteomics</i> , 2008 , 8, 4919-30	4.8	17
185	Determination of beta1,4-galactosyltransferase enzymatic activity by capillary electrophoresis and laser-induced fluorescence detection. <i>Analytical Biochemistry</i> , 1999 , 271, 36-42	3.1	17
184	Thematic minireview series on glycobiology and extracellular matrices: glycan functions pervade biology at all levels. <i>Journal of Biological Chemistry</i> , 2013 , 288, 6903	5.4	16
183	O-GlcNAcylation of Neuronal Proteins: Roles in Neuronal Functions and in Neurodegeneration. <i>Advances in Neurobiology</i> , 2014 , 9, 343-66	2.1	16
182	TATA-Box Binding Protein O-GlcNAcylation at T114 Regulates Formation of the B-TFIID Complex and Is Critical for Metabolic Gene Regulation. <i>Molecular Cell</i> , 2020 , 77, 1143-1152.e7	17.6	16
181	Carbohydrate-Carbohydrate Interactions1061-1091		15
180	Control of Mucin-Type O-Glycosylation: O-Glycan Occupancy is Directed by Substrate Specificities of Polypeptide GalNAc-Transferases273-292		15
179	Targeting O-GlcNAcylation to develop novel therapeutics. <i>Molecular Aspects of Medicine</i> , 2021 , 79, 100)8 8 5.7	15
178	AANL (Agrocybe aegerita lectin 2) is a new facile tool to probe for O-GlcNAcylation. <i>Glycobiology</i> , 2018 , 28, 363-373	5.8	14
177	Glycosyltransferase Inhibitors293-312		14
177 176	Oxidized CaMKII and O-GlcNAcylation cause increased atrial fibrillation in diabetic mice by distinct mechanisms. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	14
	Oxidized CaMKII and O-GlcNAcylation cause increased atrial fibrillation in diabetic mice by distinct	15.9	
176	Oxidized CaMKII and O-GlcNAcylation cause increased atrial fibrillation in diabetic mice by distinct mechanisms. <i>Journal of Clinical Investigation</i> , 2021 , 131, Iterative Assembly of Glycate and Glycal Derivatives: The Synthesis of Glycosylated Natural	15.9	14
176 175	Oxidized CaMKII and O-GlcNAcylation cause increased atrial fibrillation in diabetic mice by distinct mechanisms. <i>Journal of Clinical Investigation</i> , 2021 , 131, Iterative Assembly of Glycate and Glycal Derivatives: The Synthesis of Glycosylated Natural Products and Complex Oligosaccharides61-92		14
176 175 174	Oxidized CaMKII and O-GlcNAcylation cause increased atrial fibrillation in diabetic mice by distinct mechanisms. <i>Journal of Clinical Investigation</i> , 2021 , 131, Iterative Assembly of Glycate and Glycal Derivatives: The Synthesis of Glycosylated Natural Products and Complex Oligosaccharides61-92 How sugar tunes your clock. <i>Cell Metabolism</i> , 2013 , 17, 155-6 Reciprocal keratin 18 Ser48 O-GlcNAcylation and Ser52 phosphorylation using peptide analysis.	24.6	14 13 12
176 175 174	Oxidized CaMKII and O-GlcNAcylation cause increased atrial fibrillation in diabetic mice by distinct mechanisms. <i>Journal of Clinical Investigation</i> , 2021 , 131, Iterative Assembly of Glycate and Glycal Derivatives: The Synthesis of Glycosylated Natural Products and Complex Oligosaccharides61-92 How sugar tunes your clock. <i>Cell Metabolism</i> , 2013 , 17, 155-6 Reciprocal keratin 18 Ser48 O-GlcNAcylation and Ser52 phosphorylation using peptide analysis. <i>Biochemical and Biophysical Research Communications</i> , 2006 , 351, 708-12	24.6	14 13 12
176 175 174 173	Oxidized CaMKII and O-GlcNAcylation cause increased atrial fibrillation in diabetic mice by distinct mechanisms. <i>Journal of Clinical Investigation</i> , 2021 , 131, Iterative Assembly of Glycate and Glycal Derivatives: The Synthesis of Glycosylated Natural Products and Complex Oligosaccharides61-92 How sugar tunes your clock. <i>Cell Metabolism</i> , 2013 , 17, 155-6 Reciprocal keratin 18 Ser48 O-GlcNAcylation and Ser52 phosphorylation using peptide analysis. <i>Biochemical and Biophysical Research Communications</i> , 2006 , 351, 708-12 Special Problems in Glycosylation Reactions: 2-Deoxy Sugars367-405 Detection and analysis of proteins modified by O-linked N-acetylglucosamine. <i>Current Protocols in</i>	24.6	14 13 12 12

168	Nucleoplasmic and cytoplasmic glycoproteins. <i>Novartis Foundation Symposium</i> , 1989 , 145, 102-12, discussion 112-8		11
167	Protecting Groups: Effects on Reactivity, Glycosylation Stereoselectivity, and Coupling Efficiency427-44	48	10
166	Glycosylation Methods: Use of Phosphites117-134		10
165	Glycobiology of AIDS851-866		10
164	Differential sulphation of chondroitins in murine T and B lymphocytes and lymphoma cells. <i>Molecular Immunology</i> , 1987 , 24, 963-7	4.3	10
163	Nutrient regulation of immunity: O-GlcNAcylation regulates stimulus-specific NF- B -dependent transcription. <i>Science Signaling</i> , 2013 , 6, pe26	8.8	9
162	Elevated Post-Translational Modification of Proteins by O-Linked N-Acetylglucosamine in Various Tissues of Diabetic Goto-Kakizaki Rats Accompanied by Diabetic Complications. <i>Acta Histochemica Et Cytochemica</i> , 2005 , 38, 131-142	1.9	9
161	Detection and analysis of proteins modified by O-linked N-acetylglucosamine. <i>Current Protocols in Molecular Biology</i> , 2002 , Chapter 17, Unit 17.6	2.9	9
160	Stereoselective Synthesis of EMannosides319-343		9
159	Special Problems in Glycosylation Reactions: Sialidations345-365		9
158	Protein-Carbohydrate Interaction: Fundamental Considerations863-914		9
157	Glycopeptide Synthesis in Solution and on the Solid Phase267-304		8
156	N-propanoylmannosamine interferes with O-GlcNAc modification of the tyrosine 3-monooxygenase and stimulates dopamine secretion. <i>Journal of Neuroscience Research</i> , 2008 , 86, 647-52	4.4	7
155	Orthogonal Strategy in Oligosaccharide Synthesis407-426		7
154	Glycosphingolipid Microdomains in Signal Transduction, Cancer, and Development771-781		7
153	Glycosyltransferases as tools in cell biological studies. <i>Methods in Molecular Biology</i> , 1993 , 14, 175-87	1.4	7
152	Dynamic Cytoskeletal Glycosylation and Neurodegenerative Disease <i>Trends in Glycoscience and Glycotechnology</i> , 1999 , 11, 355-370	0.1	7
151	-GlcNAcylation and phosphorylation of Eactin Ser in diabetic nephropathy. <i>American Journal of Physiology - Renal Physiology</i> , 2019 , 317, F1359-F1374	4.3	6

150	Program and abstracts for the 2011 Meeting of the Society for Glycobiology. <i>Glycobiology</i> , 2011 , 21, 1454-1531	5.8	6
149	Murine platelets are not regulated by O-linked beta-N-acetylglucosamine. <i>Archives of Biochemistry and Biophysics</i> , 2008 , 474, 220-4	4.1	6
148	Fine-tuning ER-beta structure with PTMs. Chemistry and Biology, 2006, 13, 923-4		6
147	Glycosylation Methods: Use of n-Pentenyl Glycosides135-154		6
146	Nutrient regulation of transcription and signalling by O-GlcNAcylation. <i>Perspectives in Science</i> , 2015 , 6, 49-57	0.8	5
145	Glycosyl-phosphatidylinositol anchors: structure, biosynthesis and function. <i>New Comprehensive Biochemistry</i> , 1997 , 69-88		5
144	Glycobiology of the Nervous System1013-1027		5
143	Intramolecular Glycosidation Reactions449-466		5
142	Assessing heterogeneity of the high-mannose glycopeptide gp432 on the variant surface glycoprotein of trypanosomes: a comparison of plasma desorption mass spectrometry and radiolabeling techniques. <i>Analytical Chemistry</i> , 1989 , 61, 2686-8	7.8	5
141	Sialic acids and penultimate oligosaccharides on metastatic tumour cell surfaces. <i>Biochemical Society Transactions</i> , 1989 , 17, 33-6	5.1	5
140	Metabolic Engineering Glycosylation: Biotechnology's Challenge to the Glycobiologist in the Next Mill	ennium	ւ1043-1064
139	Transfer NOE Experiments for the Study of Carbohydrate-Protein Interactions1003-1023		4
138	Glycobiology of Viruses821-838		4
137	Recycling cell surface glycoproteins undergo limited oligosaccharide reprocessing in LEC1 mutant Chinese hamster ovary cells. <i>Glycobiology</i> , 1998 , 8, 1173-82	5.8	4
136	Mass Spectrometry-Based Quantitative O-GlcNAcomic Analysis. <i>Methods in Molecular Biology</i> , 2016 , 1410, 91-103	1.4	3
135	Dynamic Crosstalk between GlcNAcylation and Phosphorylation: Roles in Signaling, Transcription and Human Disease (Supplementary Material). <i>Current Signal Transduction Therapy</i> , 2010 , 5, 25-40	0.8	3
134	Polymer-Supported Synthesis of Oligosaccharides239-265		3
133	Saccharide B eptide Hybrids565-585		3

132	On the Origin of Oligosaccharide Species©lycosyltransferases in Action589-624		3
131	Enzymatic Glycosylations with Non-Natural Donors and Acceptors685-703		3
130	Structural Analysis of Oligosaccharides: FAB-MS, ES-MS and MALDI-MS915-945		3
129	Conformational Analysis in Solution by NMR947-968		3
128	Oligosaccharide Conformations by Diffraction Methods969-1001		3
127	Carbohydrate-Nucleic Acid Interactions1095-1124		3
126	EMannosidases in Asparagine-Linked Oligosaccharide Processing and Catabolism81-117		3
125	The Galactosyltransferases175-196		3
124	Fucosyltransferases197-211		3
123	Carbohydrate Sulfotransferases245-260		3
122	Biosynthesis of the O-Glycan Chains of Mucins and Mucin Type Glycoproteins313-328		3
121	The Biosynthesis of GPI Anchors417-433		3
120	Glycosylation Methods: Alkylations of Reducing Sugars177-193		3
119	Other Methods of Glycosylation195-237		3
118	Glycosylation of Proteins IA Major Challenge in Mass Spectrometry and Proteomics 2000 , 365-381		3
117	CBS homogenization mutation strategy narrows the glycan binding profile of a GlcNAc-specific lectin AANL. <i>Glycobiology</i> , 2020 , 30, 159-173	5.8	3
116	Detection and Analysis of Proteins Modified by O-Linked N-Acetylglucosamine. <i>Current Protocols</i> , 2021 , 1, e129		3
115	Detection of O-GlcNAc modifications on cardiac myofilament proteins. <i>Methods in Molecular Biology</i> , 2013 , 1005, 157-68	1.4	2

[1996-2003]

114	Structural and functional diversity of glycoconjugates: a formidable challenge to the glycoanalyst. <i>Methods in Molecular Biology</i> , 2003 , 213, 3-24	1.4	2
113	Introduction to Volumes 1 and 23-4		2
112	Glycolipid Synthesis305-317		2
111	Synthesis of Oligosaccharide Mimics: S-Analogs531-564		2
110	Solid-Phase Synthesis with Glycosyltransferases705-722		2
109	Glycosidase-Catalysed Oligosaccharide Synthesis724-844		2
108	Production of Heterologous Oligosaccharides by Recombinant Bacteria (Recombinant Oligosaccharide	≥s)845-	-860
107	Biacore1045-1057		2
106	Metabolism of Sugars and Sugar Nucleotides1-18		2
105	Processing Enzymes Involved in the Deglucosylation of N-Linked Oligosaccharides of Glycoproteins: Glucosidases I and II and Endomannosidase65-79		2
104	Microbial Glycosidases497-511		2
103	Glycosylidene Diazirines155-175		2
102	Interactions of Oligosaccharides and Glycopeptides with Hepatic Carbohydrate Receptors549-561		2
101	Galectins625-647		2
100	The Primary Cell Walls of Higher Plants783-808		2
99	Glycosylation and Development909-921		2
98	Distribution of O-GlcNAc Transferase in the Rat Pancreas <i>Acta Histochemica Et Cytochemica</i> , 2000 , 33, 163-167	1.9	2
97	Chapter 2a Glycoproteins of parasites: Glycoproteins of Trypanosoma cruzi. <i>New Comprehensive Biochemistry</i> , 1996 , 30, 99-111		2

96	Nucleocytoplasmic Glycosylation, O-linked β-N-Acetylglucosamine. <i>Current Organic Chemistry</i> , 2004 , 8, 369-383	1.7	2
95	Elevated O-GlcNAc Cycling on FOXO1A Mediates Inappropriate Hepatic Gluconeogenesis. <i>FASEB Journal</i> , 2006 , 20, A955	0.9	2
94	O-Linked N-Acetylglucosamine (GlcNAc) Transferase (UDP-N-Acetylglucosamine: Polypeptide-N-Acetylglucosaminyl Transferase) (OGT) 2014 , 393-408		2
93	O-GlcNAcylation: Nutrient Sensor that Regulates Cell Physiology 2015 , 1193-1199		2
92	Diabetes and O-GlcNAcylation 2015 , 1207-1212		2
91	Nutrient regulation of the flow of genetic information by O-GlcNAcylation. <i>Biochemical Society Transactions</i> , 2021 , 49, 867-880	5.1	2
90	Nuclear and cytoplasmic glycoproteins. New Comprehensive Biochemistry, 1997, 29, 33-54		1
89	Glycobiology of the Immune System1029-1041		1
88	Classics in Total Synthesis of Oligosaccharides and Glycoconjugates467-491		1
87	Synthesis of Sugar Nucleotides625-646		1
86	Sialyltransferases213-226		1
85	Glycosyltransferases in Glycosphingolipid Biosynthesis329-347		1
84	Biosynthesis of Hyaluronan363-374		1
83	Biosynthesis of Heparin and Heparan Sulfate Proteoglycans395-405		1
82	Escherichia coli Lipid A: A Potent Activator of Innate Immunity435-451		1
81	Sialidases485-495		1
80	Glycoprotein Processing Inhibitors513-531		1
79	P-Type Lectins and Lysosomal Enzyme Trafficking563-577		1

78	The Siglec Family of I-Type Lectins579-595		1
77	C-Type Lectins and Collectins597-611		1
76	Structures and Functions of Nuclear and Cytoplasmic Glycoproteins651-667		1
75	Structure and Functions of Mucins669-683		1
74	Biological Roles of Keratan Sulfate Proteoglycans717-727		1
73	Functions of Glycosyl Phosphatidylinositols757-769		1
72	Glycolipids and Bacterial Pathogenesis809-820		1
71	The Glycobiology of Influenza Viruses839-850		1
70	Glycobiology of Protozoan and Helminthic Parasites867-894		1
69	The Involvement of the Oligosaccharide Chains of Glycoproteins in Gamete Interactions at Fertilizatio	n895-9	081
68	Protein Glycosylation and Cancer923-943		1
67	Detection of glycophospholipid anchors on proteins. <i>Current Protocols in Molecular Biology</i> , 2001 , Chapter 17, Unit17.8	2.9	1
66	O-GlcNAcylation, oxidation and CaMKII contribute to atrial fibrillation in type 1 and type 2 diabetes by distinct mechanisms		1
65	O-GlcNAc Transferase is a Critical Regulator of Cytokinesis. <i>FASEB Journal</i> , 2006 , 20, A37	0.9	1
64	Nutrient Regulation of Signaling and Transcription. FASEB Journal, 2018, 32, 98.1	0.9	1
63	Excessive O - GlcNAcylation causes heart failure and sudden death		1
62			
02	Synthesis of C-Oligosaccharides495-530		0

60	Increased O-GlcNAcylation prevents degeneration of dopamine neurons. <i>Brain</i> , 2020 , 143, 3515-3518 11.2 0
59	Nutrient Regulation of Cancer Cells by O-GlcNAcylation 2016 , 95-108
58	A Quarter Century of Glycobiology. <i>Glycobiology</i> , 2015 , 25, 1321-2 5.8
57	Calnexin, Calreticulin and Glycoprotein Folding Within the Endoplasmic Reticulum997-1012
56	Enzymatic Glycosylations with Glycosyltransferases647-661
55	Recycling of Sugar Nucleotides in Enzymatic Glycosylation663-684
54	Carbohydrate-Protein Interactions: Use of the Laser Photo Chemically Induced Dynamic Nuclear Polarization (CIDNP)-NMR Technique1025-1044
53	Nucleotide Sugar Transporters19-36
52	Biosynthesis of Oligosaccharyl Dolichol37-44
51	Biochemistry and Molecular Biology of the N-Oligosaccharyltransferase Complex45-64
51 50	Biochemistry and Molecular Biology of the N-Oligosaccharyltransferase Complex45-64 The Role of UDP-Glcyglycoprotein Glucosyltransferase as a Sensor of Glycoprotein Conformations119-127
50	The Role of UDP-Glcyglycoprotein Glucosyltransferase as a Sensor of Glycoprotein Conformations119-127
50	The Role of UDP-Glcyglycoprotein Glucosyltransferase as a Sensor of Glycoprotein Conformations119-127 Mannosyltransferases129-144
50 49 48	The Role of UDP-Glcyglycoprotein Glucosyltransferase as a Sensor of Glycoprotein Conformations119-127 Mannosyltransferases129-144 Branching of N-Glycans: N-Acetylglucosaminyltransferases145-173
50 49 48 47	The Role of UDP-Glcyglycoprotein Glucosyltransferase as a Sensor of Glycoprotein Conformations119-127 Mannosyltransferases129-144 Branching of N-Glycans: N-Acetylglucosaminyltransferases145-173 Novel Variant Pathways in Complex-Type Oligosaccharide Synthesis261-272
50 49 48 47 46	The Role of UDP-Glcyglycoprotein Glucosyltransferase as a Sensor of Glycoprotein Conformations119-127 Mannosyltransferases129-144 Branching of N-Glycans: N-Acetylglucosaminyltransferases145-173 Novel Variant Pathways in Complex-Type Oligosaccharide Synthesis261-272 Biosynthesis of Glycogen349-361

(2007-)

42	Lysosomal Degradation of Glycoproteins473-484	
41	Plant Lectins535-548	
40	Selectins613-624	
39	Biological Roles of Hyaluronan685-699	
38	Biological Roles of Heparan Sulfate Proteoglycans701-716	
37	Developmental and Aging Changes of Chondroitin/Dermatan Sulfate Proteoglycans729-742	
36	Proteoglycans and Hyaluronan in Vascular Disease743-755	
35	Lysosomal Storage Diseases945-958	
34	Genetic Diseases of Glycosylation959-966	
33	Glycobiology of Helicobacter pylori and Gastric Disease967-976	
32	Immunoglobulin G Glycosylation and Galactosyltransferase Changes in Rheumatoid Arthritis977-996	
31	O-GlcNAc Transferase 2002 , 158-163	
30	GlcNAc Biosynthesis and Function, O-Linked 2004 , 189-192	
29	Protein Glycosylation, Overview 2004 , 504-509	
28	Insulin increases tyrosine phosphorylation and activity of O-GlcNAc Transferase (OGT). <i>FASEB Journal</i> , 2006 , 20, A955	0.9
27	Defining the Dynamic O-GlcNAc Proteome. <i>FASEB Journal</i> , 2006 , 20, A56	0.9
26	Deciphering the roles of O-GlcNAcylation during CD4+ T-cells activation. FASEB Journal, 2007, 21, A103	35 0.9
25	O-GlcNAcylation of Kinases. <i>FASEB Journal</i> , 2007 , 21, A985	0.9

24	Glycogen Synthase Kinase-3 (GSK3) Inhibition By Lithium Induces O-GlcNAcylation Perturbations. <i>FASEB Journal</i> , 2007 , 21, A1021	0.9
23	O-GlcNAcylation: a new post-translational modification of ribosomal proteins. <i>FASEB Journal</i> , 2007 , 21, A280	0.9
22	The role of O-GlcNAcylation of GLUT4 Storage Vesicle Proteins in Insulin Stimulated GLUT4 Trafficking. <i>FASEB Journal</i> , 2007 , 21, A663	0.9
21	Vimentin is a Target of an O-GlcNAc/O-Phosphate Signaling Complex at M-Phase. <i>FASEB Journal</i> , 2007 , 21, A615	0.9
20	AMPK and p38 MAP kinase regulate OGT during glucose deprivation. FASEB Journal, 2007, 21, A620	0.9
19	Dynamic Cycling of the O-GlcNAc Transferase on the Estrogen Responsive pS2 Promoter During the Transcription Cycle <i>FASEB Journal</i> , 2007 , 21, A286	0.9
18	O-GlcNAcase is Cleaved Between Its Glycosidase & Histone Acetyltransferase Domains by Caspase-3 During Apoptosis. <i>FASEB Journal</i> , 2007 , 21, A257	0.9
17	Determining Role of O-GlcNAcylation During T-cell Activation. FASEB Journal, 2008, 22, 826.3	0.9
16	O-GlcNAc modification of CaMKIV. FASEB Journal, 2008, 22, 1043.3	0.9
15	The alpha2 catalytic subunit of AMP-activated protein kinase (AMPK) is O-GlcNAc modified. <i>FASEB Journal</i> , 2008 , 22, 614.7	0.9
14	A PGC-1£O-GlcNAc Transferase Complex Regulates Foxo1a Activation in Response to Glucose. <i>FASEB Journal</i> , 2008 , 22, 613.1	0.9
13	Coactivator Associated Arginine Methyltransferase 1 (CARM1) is reciprocally regulated by phosphorylation and O-GlcNAcylation. <i>FASEB Journal</i> , 2008 , 22, 1043.2	0.9
12	PB-05Localization of the O-GlcNAcylated Actin and O-phosphorylated Actin in the Diabetic Kidney: Immunohistochemical Study. <i>Microscopy (Oxford, England)</i> , 2017 , 66, i35-i35	1.3
11	O-GlcNAcylation modifies the metastatic properties of prostate cancer cells (789.5). <i>FASEB Journal</i> , 2014 , 28, 789.5	0.9
10	O-GlcNAcomic profiling reveals altered O-GlcNAcylation of mitochondrial proteins in diabetes (608.4). <i>FASEB Journal</i> , 2014 , 28, 608.4	0.9
9	O-GlcNAcylation: Nutrient Sensor in Chronic Diseases of Aging 2015 , 1201-1205	
8	O-GlcNAcylation Modifies the Metastatic Properties of Prostate Cancer Cells. <i>FASEB Journal</i> , 2015 , 29, 717.2	0.9
7	Complex Between GlcNAcylation & Phosphorylation is Extensive: Roles in Nutrient Sensing & Signaling. <i>FASEB Journal</i> , 2010 , 24, 303.2	0.9

LIST OF PUBLICATIONS

- 6 Diabetes and O-GlcNAcylation **2014**, 1-6
- 5 O-GlcNAcylation: A Nutrient Sensor That Regulates Cell Physiology **2014**, 1-7
- Roles of the Nutrient Sensor, O-GlcNAcylation, in Chronic Diseases of Aging **2014**, 1-5
- 3 Corneal Proteoglycans **1982**, 1-52
- 2 Carbohydrates | O-Linked GlcNAc Biosynthesis, Function, and Medicinal Implications 2021, 639-645
- O-GlcNAcylation and Diabetes **2021**, 133-148