Bruno Mendes Roatt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/134660/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prevalence and Factors Associated with Leishmania infantum Infection of Dogs from an Urban Area of Brazil as Identified by Molecular Methods. PLoS Neglected Tropical Diseases, 2011, 5, e1291.	1.3	118
2	Recent advances and new strategies on leishmaniasis treatment. Applied Microbiology and Biotechnology, 2020, 104, 8965-8977.	1.7	107
3	Immunotherapy and Immunochemotherapy in Visceral Leishmaniasis: Promising Treatments for this Neglected Disease. Frontiers in Immunology, 2014, 5, 272.	2.2	73
4	Immunogenicity of a killed Leishmania vaccine with saponin adjuvant in dogs. Vaccine, 2007, 25, 7674-7686.	1.7	69
5	Comparative genomics of canine-isolated Leishmania (Leishmania) amazonensis from an endemic focus of visceral leishmaniasis in Governador Valadares, southeastern Brazil. Scientific Reports, 2017, 7, 40804.	1.6	65
6	Evaluation of Change in Canine Diagnosis Protocol Adopted by the Visceral Leishmaniasis Control Program in Brazil and a New Proposal for Diagnosis. PLoS ONE, 2014, 9, e91009.	1.1	59
7	Peptide Vaccines for Leishmaniasis. Frontiers in Immunology, 2018, 9, 1043.	2.2	59
8	Parasite Burden in Hamsters Infected with Two Different Strains of Leishmania (Leishmania) infantum: "Leishman Donovan Units―versus Real-Time PCR. PLoS ONE, 2012, 7, e47907.	1.1	57
9	Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis. Revista Da Sociedade Brasileira De Medicina Tropical, 2016, 49, 398-407.	0.4	49
10	A killed Leishmania vaccine with sand fly saliva extract and saponin adjuvant displays immunogenicity in dogs. Vaccine, 2008, 26, 623-638.	1.7	48
11	Molecular diagnosis of canine visceral leishmaniasis: A comparative study of three methods using skin and spleen from dogs with natural Leishmania infantum infection. Veterinary Parasitology, 2013, 197, 498-503.	0.7	47
12	Clinical Forms of Canine Visceral Leishmaniasis in Naturally Leishmania infantum–Infected Dogs and Related Myelogram and Hemogram Changes. PLoS ONE, 2013, 8, e82947.	1.1	46
13	Immunological profile of resistance and susceptibility in naturally infected dogs by Leishmania infantum. Veterinary Parasitology, 2014, 205, 472-482.	0.7	43
14	Performance of LBSap Vaccine after Intradermal Challenge with L. infantum and Saliva of Lu. longipalpis: Immunogenicity and Parasitological Evaluation. PLoS ONE, 2012, 7, e49780.	1.1	41
15	Treatment of murine visceral leishmaniasis using an 8-hydroxyquinoline-containing polymeric micelle system. Parasitology International, 2016, 65, 728-736.	0.6	41
16	Poloxamer 407 (Pluronic® F127)-based polymeric micelles for amphotericin B: InÂvitro biological activity, toxicity and inÂvivo therapeutic efficacy against murine tegumentary leishmaniasis. Experimental Parasitology, 2016, 169, 34-42.	0.5	41
17	An effective in vitro and in vivo antileishmanial activity and mechanism of action of 8-hydroxyquinoline against Leishmania species causing visceral and tegumentary leishmaniasis. Veterinary Parasitology, 2016, 217, 81-88.	0.7	41
18	A recombinant chimeric protein composed of human and miceâ€specific <scp>CD</scp> 4 ⁺ and <scp>CD</scp> 8 ⁺ Tâ€cell epitopes protects against visceral leishmaniasis. Parasite Immunology, 2017, 39, e12359.	0.7	39

#	Article	IF	CITATIONS
19	Clinical, hematological and biochemical alterations in hamster (Mesocricetus auratus) experimentally infected with Leishmania infantum through different routes of inoculation. Parasites and Vectors, 2016, 9, 181.	1.0	38
20	A Vaccine Therapy for Canine Visceral Leishmaniasis Promoted Significant Improvement of Clinical and Immune Status with Reduction in Parasite Burden. Frontiers in Immunology, 2017, 8, 217.	2.2	37
21	Prophylactic properties of a <i>Leishmania</i> â€specific hypothetical protein in a murine model of visceral leishmaniasis. Parasite Immunology, 2015, 37, 646-656.	0.7	33
22	Recombinant prohibitin protein of Leishmania infantum acts as a vaccine candidate and diagnostic marker against visceral leishmaniasis. Cellular Immunology, 2018, 323, 59-69.	1.4	33
23	Comparing the therapeutic efficacy of different amphotericin B-carrying delivery systems against visceral leishmaniasis. Experimental Parasitology, 2018, 186, 24-35.	0.5	32
24	A vaccine combining two Leishmania braziliensis proteins offers heterologous protection against Leishmania infantum infection. Molecular Immunology, 2016, 76, 70-79.	1.0	29
25	Vaccination with a CD4+ and CD8+ T-cell epitopes-based recombinant chimeric protein derived from Leishmania infantum proteins confers protective immunity against visceral leishmaniasis. Translational Research, 2018, 200, 18-34.	2.2	29
26	The Tcl and Tcll Trypanosoma cruzi experimental infections induce distinct immune responses and cardiac fibrosis in dogs. Memorias Do Instituto Oswaldo Cruz, 2014, 109, 1005-1013.	0.8	28
27	An 8-hydroxyquinoline-containing polymeric micelle system is effective for the treatment of murine tegumentary leishmaniasis. Parasitology Research, 2016, 115, 4083-4095.	0.6	28
28	Canine visceral leishmaniasis: Incidence and risk factors for infection in a cohort study in Brazil. Veterinary Parasitology, 2013, 197, 411-417.	0.7	27
29	A new Leishmania-specific hypothetical protein and its non-described specific B cell conformational epitope applied in the serodiagnosis of canine visceral leishmaniasis. Parasitology Research, 2016, 115, 1649-1658.	0.6	27
30	Canine visceral leishmaniasis biomarkers and their employment in vaccines. Veterinary Parasitology, 2019, 271, 87-97.	0.7	27
31	In vivo antileishmanial efficacy of a naphthoquinone derivate incorporated into a Pluronic® F127-based polymeric micelle system against Leishmania amazonensis infection. Biomedicine and Pharmacotherapy, 2019, 109, 779-787.	2.5	27
32	A Pluronic® F127-based polymeric micelle system containing an antileishmanial molecule is immunotherapeutic and effective in the treatment against Leishmania amazonensis infection. Parasitology International, 2019, 68, 63-72.	0.6	26
33	A candidate vaccine for human visceral leishmaniasis based on a specific T cell epitope-containing chimeric protein protects mice against Leishmania infantum infection. Npj Vaccines, 2020, 5, 75.	2.9	26
34	Leishmania infantum mimotopes and a phage–ELISA assay as tools for a sensitive and specific serodiagnosis of human visceral leishmaniasis. Diagnostic Microbiology and Infectious Disease, 2017, 87, 219-225.	0.8	25
35	Recent advances and new strategies in Leishmaniasis diagnosis. Applied Microbiology and Biotechnology, 2020, 104, 8105-8116.	1.7	22
36	A clioquinol-containing Pluronic [®] F127 polymeric micelle system is effective in the treatment of visceral leishmaniasis in a murine model. Parasite, 2020, 27, 29.	0.8	22

Bruno Mendes Roatt

#	Article	IF	CITATIONS
37	Cytokine and nitric oxide patterns in dogs immunized with LBSap vaccine, before and after experimental challenge with Leishmania chagasi plus saliva of Lutzomyia longipalpis. Veterinary Parasitology, 2013, 198, 371-381.	0.7	21
38	LBSapSal-vaccinated dogs exhibit increased circulating T-lymphocyte subsets (CD4+ and CD8+) as well as a reduction of parasitism after challenge with Leishmania infantum plus salivary gland of Lutzomyia longipalpis. Parasites and Vectors, 2014, 7, 61.	1.0	21
39	A new Leishmania-specific hypothetical protein, LiHyT, used as a vaccine antigen against visceral leishmaniasis. Acta Tropica, 2016, 154, 73-81.	0.9	21
40	Chimeric Vaccines Designed by Immunoinformatics-Activated Polyfunctional and Memory T Cells That Trigger Protection against Experimental Visceral Leishmaniasis. Vaccines, 2020, 8, 252.	2.1	21
41	An ELISA immunoassay employing a conserved Leishmania hypothetical protein for the serodiagnosis of visceral and tegumentary leishmaniasis in dogs and humans. Cellular Immunology, 2017, 318, 42-48.	1.4	20
42	Immunogenicity and protective efficacy of a new Leishmania hypothetical protein applied as a DNA vaccine or in a recombinant form against Leishmania infantum infection. Molecular Immunology, 2019, 106, 108-118.	1.0	20
43	Shotgun proteomics to unravel the complexity of the Leishmania infantum exoproteome and the relative abundance of its constituents. Molecular and Biochemical Parasitology, 2014, 195, 43-53.	0.5	19
44	New serological tools for improved diagnosis of human tegumentary leishmaniasis. Journal of Immunological Methods, 2016, 434, 39-45.	0.6	19
45	A recombinant fusion protein displaying murine and human MHC class I- and II-specific epitopes protects against Leishmania amazonensis infection. Cellular Immunology, 2017, 313, 32-42.	1.4	18
46	A vaccine composed of a hypothetical protein and the eukaryotic initiation factor 5a from Leishmania braziliensis cross-protection against Leishmania amazonensis infection. Immunobiology, 2017, 222, 251-260.	0.8	18
47	A Leishmania hypothetical protein-containing liposome-based formulation is highly immunogenic and induces protection against visceral leishmaniasis. Cytokine, 2018, 111, 131-139.	1.4	18
48	Liposomal Formulation of ChimeraT, a Multiple T-Cell Epitope-Containing Recombinant Protein, Is a Candidate Vaccine for Human Visceral Leishmaniasis. Vaccines, 2020, 8, 289.	2.1	18
49	Analysis using canine peripheral blood for establishing in vitro conditions for monocyte differentiation into macrophages for Leishmania chagasi infection and T-cell subset purification. Veterinary Parasitology, 2013, 198, 62-71.	0.7	17
50	Multicomponent LBSap vaccine displays immunological and parasitological profiles similar to those of Leish-Tec® and Leishmune® vaccines against visceral leishmaniasis. Parasites and Vectors, 2016, 9, 472.	1.0	17
51	Evaluation of a hypothetical protein for serodiagnosis and as a potential marker for post-treatment serological evaluation of tegumentary leishmaniasis patients. Parasitology Research, 2017, 116, 1197-1206.	0.6	17
52	Mixed Formulation of Conventional and Pegylated Meglumine Antimoniate-Containing Liposomes Reduces Inflammatory Process and Parasite Burden in Leishmania infantum-Infected BALB/c Mice. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	17
53	Neutrophil properties in healthy and Leishmania infantum-naturally infected dogs. Scientific Reports, 2019, 9, 6247.	1.6	17
54	Dogs infected with the blood trypomastigote form of Trypanosoma cruzi display an increase expression of cytokines and chemokines plus an intense cardiac parasitism during acute infection. Molecular Immunology, 2014, 58, 92-97.	1.0	16

#	Article	IF	CITATIONS
55	Selection strategy of phage-displayed immunogens based on an in vitro evaluation of the Th1 response of PBMCs and their potential use as a vaccine against Leishmania infantum infection. Parasites and Vectors, 2017, 10, 617.	1.0	15
56	Synthetic Peptides Elicit Strong Cellular Immunity in Visceral Leishmaniasis Natural Reservoir and Contribute to Long-Lasting Polyfunctional T-Cells in BALB/c Mice. Vaccines, 2019, 7, 162.	2.1	15
57	Cross-protective efficacy of Leishmania infantum LiHyD protein against t egumentary leishmaniasis caused by Leishmania major and Leishmania braziliensis species. Acta Tropica, 2016, 158, 220-230.	0.9	14
58	Probing the efficacy of a heterologous Leishmania/L. Viannia braziliensis recombinant enolase as a candidate vaccine to restrict the development of L. infantum in BALB/c mice. Acta Tropica, 2017, 171, 8-16.	0.9	14
59	Impact of dose and surface features on plasmatic and liver concentrations of biodegradable polymeric nanocapsules. European Journal of Pharmaceutical Sciences, 2017, 105, 19-32.	1.9	13
60	Recombinant small glutamine-rich tetratricopeptide repeat-containing protein of Leishmania infantum: Potential vaccine and diagnostic application against visceral leishmaniasis. Molecular Immunology, 2017, 91, 272-281.	1.0	13
61	Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice. Vaccines, 2019, 7, 183.	2.1	13
62	High-through identification of T cell-specific phage-exposed mimotopes using PBMCs from tegumentary leishmaniasis patients and their use as vaccine candidates against Leishmania amazonensis infection. Parasitology, 2019, 146, 322-332.	0.7	13
63	Dogs immunized with LBSap vaccine displayed high levels of IL-12 and IL-10 cytokines and CCL4, CCL5 and CXCL8 chemokines in the dermis. Molecular Immunology, 2013, 56, 540-548.	1.0	12
64	Evaluation of a Prototype Flow Cytometry Test for Serodiagnosis of Canine Visceral Leishmaniasis. Vaccine Journal, 2013, 20, 1792-1798.	3.2	12
65	Cellular immunophenotypic profile in the splenic compartment during canine visceral leishmaniasis. Veterinary Immunology and Immunopathology, 2014, 157, 190-196.	0.5	12
66	Histological study of cell migration in the dermis of hamsters after immunisation with two different vaccines against visceral leishmaniasis. Veterinary Immunology and Immunopathology, 2009, 128, 418-424.	0.5	11
67	Immunodiagnosis of human and canine visceral leishmaniasis using recombinant Leishmania infantum Prohibitin protein and a synthetic peptide containing its conformational B-cell epitope. Journal of Immunological Methods, 2019, 474, 112641.	0.6	11
68	Digitoxigenin presents an effective and selective antileishmanial action against Leishmania infantum and is a potential therapeutic agent for visceral leishmaniasis. Parasitology Research, 2021, 120, 321-335.	0.6	11
69	Ivermectin presents effective and selective antileishmanial activity in vitro and in vivo against Leishmania infantum and is therapeutic against visceral leishmaniasis. Experimental Parasitology, 2021, 221, 108059.	0.5	11
70	A chimeric vaccine combined with adjuvant system induces immunogenicity and protection against visceral leishmaniasis in BALB/c mice. Vaccine, 2021, 39, 2755-2763.	1.7	11
71	Leishmania infantum amastin protein incorporated in distinct adjuvant systems induces protection against visceral leishmaniasis. Cytokine, 2020, 129, 155031.	1.4	10
72	Impact of LbSapSal Vaccine in Canine Immunological and Parasitological Features before and after Leishmania chagasi-Challenge. PLoS ONE, 2016, 11, e0161169.	1.1	9

#	Article	IF	CITATIONS
73	Performance of Leishmania braziliensis enolase protein for the serodiagnosis of canine and human visceral leishmaniosis. Veterinary Parasitology, 2017, 238, 77-81.	0.7	9
74	Evaluation of a Leishmania hypothetical protein administered as DNA vaccine or recombinant protein against Leishmania infantum infection and its immunogenicity in humans. Cellular Immunology, 2018, 331, 67-77.	1.4	9
75	Acarbose presents in vitro and in vivo antileishmanial activity against Leishmania infantum and is a promising therapeutic candidate against visceral leishmaniasis. Medical Microbiology and Immunology, 2021, 210, 133-147.	2.6	9
76	Effect of the preservative and temperature conditions on the stability of Leishmania infantum promastigotes antigens applied in a flow cytometry diagnostic method for canine visceral leishmaniasis. Diagnostic Microbiology and Infectious Disease, 2013, 76, 470-476.	0.8	7
77	Phase I and II Clinical Trial Comparing the LBSap, Leishmune®, and Leish-Tec® Vaccines against Canine Visceral Leishmaniasis. Vaccines, 2020, 8, 690.	2.1	7
78	Parasitological and immunological evaluation of a novel chemotherapeutic agent against visceral leishmaniasis. Parasite Immunology, 2020, 42, e12784.	0.7	7
79	Leishmania infantum pyridoxal kinase evaluated in a recombinant protein and DNA vaccine to protects against visceral leishmaniasis. Molecular Immunology, 2020, 124, 161-171.	1.0	7
80	Flau-A, a naphthoquinone derivative, is a promising therapeutic candidate against visceral leishmaniasis: A preliminary study. Experimental Parasitology, 2022, 233, 108205.	0.5	7
81	Prednisolone and cyclosporine A: Effects on an experimental model of ancylostomiasis. Experimental Parasitology, 2013, 133, 80-88.	0.5	6
82	Comparative analysis of real-time PCR assays in the detection of canine visceral leishmaniasis. Parasitology Research, 2018, 117, 3341-3346.	0.6	6
83	Evaluation of the protective efficacy of a Leishmania protein associated with distinct adjuvants against visceral leishmaniasis and in vitro immunogenicity in human cells. Parasitology Research, 2020, 119, 2609-2622.	0.6	6
84	IL-10 receptor blockade controls the in vitro infectivity of Leishmania infantum and promotes a Th1 activation in PBMC of dogs with visceral leishmaniasis. Molecular Immunology, 2021, 137, 20-27.	1.0	6
85	<i>In vitro</i> and <i>in vivo</i> antileishmanial activity of β-acetyl-digitoxin, a cardenolide of <i>Digitalis lanata</i> potentially useful to treat visceral leishmaniasis. Parasite, 2021, 28, 38.	0.8	6
86	A recombinant Leishmania amastigote-specific protein, rLiHyG, with adjuvants, protects against infection with Leishmania infantum. Acta Tropica, 2022, 230, 106412.	0.9	6
87	Association between mast cells, tissue remodelation and parasite burden in the skin of dogs with visceral leishmaniasis. Veterinary Parasitology, 2017, 243, 260-266.	0.7	5
88	Effect on cellular recruitment and the innate immune response by combining saponin, monophosphoryl lipid-A and Incomplete Freund's Adjuvant with Leishmania (Viannia) braziliensis antigens for a vaccine formulation. Vaccine, 2019, 37, 7269-7279.	1.7	5
89	A Leishmania amastigote-specific hypothetical protein evaluated as recombinant protein plus Th1 adjuvant or DNA plasmid-based vaccine to protect against visceral leishmaniasis. Cellular Immunology, 2020, 356, 104194.	1.4	5
90	Liver infusion tryptose (LIT): the best choice for growth, viability, and infectivity of Leishmania infantum parasites. Parasitology Research, 2020, 119, 4185-4195.	0.6	5

Bruno Mendes Roatt

#	Article	IF	CITATIONS
91	Establishment of monoclonal antibodies to evaluate the cellular immunity in a hamster model of <i>L infantum</i> infection. Parasite Immunology, 2021, 43, e12823.	0.7	4
92	Immunochemotherapy for visceral leishmaniasis: combinatorial action of Miltefosine plus LBSapMPL vaccine improves adaptative Th1 immune response with control of splenic parasitism in experimental hamster model. Parasitology, 2022, 149, 371-379.	0.7	4
93	Crossâ€protective efficacy from a immunogen firstly identified in <i><scp>L</scp>eishmania infantum</i> against tegumentary leishmaniasis. Parasite Immunology, 2016, 38, 108-117.	0.7	3
94	Leishmania eukaryotic elongation Factor-1 beta protein is immunogenic and induces parasitological protection in mice against Leishmania infantum infection. Microbial Pathogenesis, 2021, 151, 104745.	1.3	3
95	Comparative evaluation of meglumine antimoniate encapsulated in a mixture of conventional and PEGylated liposomes and immunotherapy using an anti-canine IL-10 receptor-blocking monoclonal antibody on canine visceral leishmaniasis. Molecular Immunology, 2022, 141, 70-78.	1.0	3
96	<i>Leishmania</i> Â <scp>LiHyC</scp> protein is immunogenic and induces protection against visceral leishmaniasis. Parasite Immunology, 2022, 44, e12921.	0.7	3
97	Heterologous vaccine therapy associated with half course of Miltefosine promote activation of the proinflammatory response with control of splenic parasitism in a hamster model of visceral leishmaniasis. Current Research in Immunology, 2021, 2, 194-201.	1.2	2
98	Recombinant guanosine-5′-triphosphate (GTP)-binding protein associated with Poloxamer 407-based polymeric micelles protects against Leishmania infantum infection. Cytokine, 2022, 153, 155865.	1.4	2
99	Down regulation of IL-10 and TGF-Î ² 1 mRNA expression associated with reduced inflammatory process correlates with control of parasitism in the liver after treatingL. infantuminfected dogs with the LBMPL vaccine therapy. Cytokine, 2022, 153, 155838.	1.4	1
100	Development of an immunogen containing CD4+/CD8+ T-cell epitopes for the prophylaxis of tegumentary leishmaniasis. Applied Microbiology and Biotechnology, 2022, 106, 4627-4641.	1.7	1