
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1346302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A practical guide for restoration ecologists to manage microbial contamination risks before laboratory processes during microbiota restoration studies. Restoration Ecology, 2023, 31, .	1.4	3
2	Soil <scp>DNA</scp> chronosequence analysis shows bacterial community reâ€assembly following postâ€mining forest rehabilitation. Restoration Ecology, 2023, 31, .	1.4	3
3	Does revegetation cause soil microbiota recovery? Evidence from revisiting a revegetation chronosequence 6 years after initial sampling. Restoration Ecology, 2022, 30, .	1.4	8
4	Twenty Important Research Questions in Microbial Exposure and Social Equity. MSystems, 2022, 7, e0124021.	1.7	14
5	Rare genera differentiate urban green space soil bacterial communities in three cities across the world. Access Microbiology, 2022, 4, 000320.	0.2	2
6	Next generation restoration metrics: Using soil eDNA bacterial community data to measure trajectories towards rehabilitation targets. Journal of Environmental Management, 2022, 310, 114748.	3.8	14
7	Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (<scp>EBVs</scp>) for genetic composition. Biological Reviews, 2022, 97, 1511-1538.	4.7	73
8	Gut microbiota composition does not associate with <i>toxoplasma</i> infection in rats. Molecular Ecology, 2022, 31, 3963-3970.	2.0	5
9	Extensive polyploid clonality was a successful strategy for seagrass to expand into a newly submerged environment. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	27
10	Global meta-analysis shows progress towards recovery of soil microbiota following revegetation. Biological Conservation, 2022, 272, 109592.	1.9	5
11	Existing and emerging uses of drones in restoration ecology. Methods in Ecology and Evolution, 2022, 13, 1899-1911.	2.2	23
12	Is the genomics â€~cart' before the restoration ecology â€~horse'? Insights from qualitative interviews and trends from the literature. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	14
13	Ecosystem Restoration: A Public Health Intervention. EcoHealth, 2021, 18, 269-271.	0.9	18
14	Increased plant species richness associates with greater soil bacterial diversity in urban green spaces. Environmental Research, 2021, 196, 110425.	3.7	28
15	Effective population size remains a suitable, pragmatic indicator of genetic diversity for all species, including forest trees. Biological Conservation, 2021, 253, 108906.	1.9	32
16	A guide to minimize contamination issues in microbiome restoration studies. Restoration Ecology, 2021, 29, e13358.	1.4	6
17	Macrogenetic studies must not ignore limitations of genetic markers and scale. Ecology Letters, 2021, 24, 1282-1284.	3.0	27
18	Authors' Reply to Letter to the Editor: Continued improvement to genetic diversity indicator for CBD. Conservation Genetics, 2021, 22, 533-536.	0.8	18

#	Article	IF	CITATIONS
19	Exposure to airborne bacteria depends upon vertical stratification and vegetation complexity. Scientific Reports, 2021, 11, 9516.	1.6	31
20	Four Islands EcoHealth Network: an Australasian initiative building synergies between the restoration of ecosystems and human health. Restoration Ecology, 2021, 29, e13382.	1.4	4
21	Genomic, Habitat, and Leaf Shape Analyses Reveal a Possible Cryptic Species and Vulnerability to Climate Change in a Threatened Daisy. Life, 2021, 11, 553.	1.1	2
22	The potential of outdoor environments to supply beneficial butyrate-producing bacteria to humans. Science of the Total Environment, 2021, 777, 146063.	3.9	35
23	Drivers of seedling establishment success in dryland restoration efforts. Nature Ecology and Evolution, 2021, 5, 1283-1290.	3.4	75
24	Opportunities and challenges of macrogenetic studies. Nature Reviews Genetics, 2021, 22, 791-807.	7.7	55
25	A soil archaeal community responds to a decade of ecological restoration. Restoration Ecology, 2020, 28, 63-72.	1.4	6
26	Soil bacterial community differences along a coastal restoration chronosequence. Plant Ecology, 2020, 221, 795-811.	0.7	12
27	Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Science of the Total Environment, 2020, 701, 134684.	3.9	98
28	Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environment International, 2020, 145, 106084.	4.8	103
29	Vertical Stratification in Urban Green Space Aerobiomes. Environmental Health Perspectives, 2020, 128, 117008.	2.8	35
30	Restoration, soil organisms, and soil processes: emerging approaches. Restoration Ecology, 2020, 28, S307.	1.4	38
31	Variation in reproductive effort, genetic diversity and mating systems across Posidonia australis seagrass meadows in Western Australia. AoB PLANTS, 2020, 12, plaa038.	1.2	8
32	Increased Genetic Diversity via Gene Flow Provides Hope for Acacia whibleyana, an Endangered Wattle Facing Extinction. Diversity, 2020, 12, 299.	0.7	12
33	Exposure to greenspaces could reduce the high global burden of pain. Environmental Research, 2020, 187, 109641.	3.7	39
34	Microbiome-Inspired Green Infrastructure: A Toolkit for Multidisciplinary Landscape Design. Trends in Biotechnology, 2020, 38, 1305-1308.	4.9	33
35	Characterising the soil fungal microbiome in metropolitan green spaces across a vegetation biodiversity gradient. Fungal Ecology, 2020, 47, 100939.	0.7	20
36	Mainstreaming Microbes across Biomes. BioScience, 2020, 70, 589-596.	2.2	11

#	Article	IF	CITATIONS
37	The Lovebug Effect: Is the human biophilic drive influenced by interactions between the host, the environment, and the microbiome?. Science of the Total Environment, 2020, 720, 137626.	3.9	22
38	Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biological Conservation, 2020, 248, 108654.	1.9	285
39	Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restoration Ecology, 2020, 28, S322.	1.4	43
40	Multispecies sustainability. Global Sustainability, 2020, 3, .	1.6	36
41	The potential of genomics for restoring ecosystems and biodiversity. Nature Reviews Genetics, 2019, 20, 615-628.	7.7	142
42	Plants, position and pollination: Planting arrangement and pollination limitation in a revegetated eucalypt woodland. Ecological Management and Restoration, 2019, 20, 222-230.	0.7	1
43	How well do revegetation plantings capture genetic diversity?. Biology Letters, 2019, 15, 20190460.	1.0	28
44	Green Prescriptions and Their Co-Benefits: Integrative Strategies for Public and Environmental Health. Challenges, 2019, 10, 9.	0.9	88
45	Can bacterial indicators of a grassy woodland restoration inform ecosystem assessment and microbiota-mediated human health?. Environment International, 2019, 129, 105-117.	4.8	50
46	Disentangling the evolutionary history of three related shrub species using genome-wide molecular markers. Conservation Genetics, 2019, 20, 1101-1112.	0.8	5
47	Higher levels of greenness and biodiversity associate with greater subjective wellbeing in adults living in Melbourne, Australia. Health and Place, 2019, 57, 321-329.	1.5	73
48	Relating Urban Biodiversity to Human Health With the â€~Holobiont' Concept. Frontiers in Microbiology, 2019, 10, 550.	1.5	64
49	Asymmetrical habitat coupling of an aquatic predator—The importance of individual specialization. Ecology and Evolution, 2019, 9, 3405-3415.	0.8	14
50	Clumped planting arrangements improve seed production in a revegetated eucalypt woodland. Restoration Ecology, 2019, 27, 638-646.	1.4	6
51	Standardized genetic diversityâ€life history correlates for improved genetic resource management of Neotropical trees. Diversity and Distributions, 2018, 24, 730-741.	1.9	21
52	Spatially designed revegetation—why the spatial arrangement of plants should be as important to revegetation as they are to natural systems. Restoration Ecology, 2018, 26, 446-455.	1.4	17
53	Specificity in Arabidopsis thaliana recruitment of root fungal communities from soil and rhizosphere. Fungal Biology, 2018, 122, 231-240.	1.1	58
54	Ambient soil cation exchange capacity inversely associates with infectious and parasitic disease risk in regional Australia. Science of the Total Environment, 2018, 626, 117-125.	3.9	25

#	Article	IF	CITATIONS
55	High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration. Biological Conservation, 2018, 217, 113-120.	1.9	81
56	Walking Ecosystems in Microbiome-Inspired Green Infrastructure: An Ecological Perspective on Enhancing Personal and Planetary Health. Challenges, 2018, 9, 40.	0.9	56
57	Cities, biodiversity and health: we need healthy urban microbiome initiatives. Cities and Health, 2018, 2, 143-150.	1.6	23
58	Advancing DNA Barcoding and Metabarcoding Applications for Plants Requires Systematic Analysis of Herbarium Collections—An Australian Perspective. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	55
59	Functional acclimation across microgeographic scales in Dodonaea viscosa. AoB PLANTS, 2018, 10, ply029.	1.2	3
60	Priority Actions to Improve Provenance Decision-Making. BioScience, 2018, 68, 510-516.	2.2	87
61	Networked and embedded scientific experiments will improve restoration outcomes. Frontiers in Ecology and the Environment, 2018, 16, 288-294.	1.9	43
62	Invasive Rosa rugosa populations outperform native populations, but some populations have greater invasive potential than others. Scientific Reports, 2018, 8, 5735.	1.6	10
63	Revegetation rewilds the soil bacterial microbiome of an old field. Molecular Ecology, 2017, 26, 2895-2904.	2.0	68
64	Leaf trait associations with environmental variation in the wideâ€ranging shrub <i>Dodonaea viscosa</i> subsp. <i>angustissima</i> (Sapindaceae). Austral Ecology, 2017, 42, 553-561.	0.7	24
65	Changes in abundance and reproductive activity of small arid-zone murid rodents on an active cattle station in central Australia. Wildlife Research, 2017, 44, 22.	0.7	5
66	Urban habitat restoration provides a human health benefit through microbiome rewilding: the Microbiome Rewilding Hypothesis. Restoration Ecology, 2017, 25, 866-872.	1.4	129
67	Bioclimatic transect networks: Powerful observatories of ecological change. Ecology and Evolution, 2017, 7, 4607-4619.	0.8	29
68	Ecotypic differentiation and phenotypic plasticity combine to enhance the invasiveness of the most widespread daisy in Chile, Leontodon saxatilis. Scientific Reports, 2017, 7, 1546.	1.6	13
69	Targeted capture to assess neutral genomic variation in the narrow-leaf hopbush across a continental biodiversity refugium. Scientific Reports, 2017, 7, 41367.	1.6	23
70	Genetic diversity and structure of the Australian flora. Diversity and Distributions, 2017, 23, 41-52.	1.9	56
71	Building a Plant DNA Barcode Reference Library for a Diverse Tropical Flora: An Example from Queensland, Australia. Diversity, 2016, 8, 5.	0.7	15
72	Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience, 2016, 5, 21.	3.3	204

#	Article	IF	CITATIONS
73	Restoration: 'Garden of Eden' unrealistic. Nature, 2016, 533, 469-469.	13.7	14
74	Local maladaptation in a foundation tree species: Implications for restoration. Biological Conservation, 2016, 203, 226-232.	1.9	29
75	Finding needles in a genomic haystack: targeted capture identifies clear signatures of selection in a nonmodel plant species. Molecular Ecology, 2016, 25, 4216-4233.	2.0	25
76	Height differences in two eucalypt provenances with contrasting levels of aridity. Restoration Ecology, 2016, 24, 471-478.	1.4	5
77	Constraints to and conservation implications for climate change adaptation in plants. Conservation Genetics, 2016, 17, 305-320.	0.8	122
78	Mating patterns and pollinator mobility are critical traits in forest fragmentation genetics. Heredity, 2015, 115, 108-114.	1.2	101
79	The resilience of forest fragmentation genetics—no longer a paradox—we were just looking in the wrong place. Heredity, 2015, 115, 97-99.	1.2	78
80	Pollen flow in fragmented landscapes maintains genetic diversity following stand-replacing disturbance in a neotropical pioneer tree, Vochysia ferruginea Mart. Heredity, 2015, 115, 125-129.	1.2	23
81	Mating system and early viability resistance to habitat fragmentation in a bird-pollinated eucalypt. Heredity, 2015, 115, 100-107.	1.2	41
82	Genetic Bottlenecks in Time and Space: Reconstructing Invasions from Contemporary and Historical Collections. PLoS ONE, 2014, 9, e106874.	1.1	16
83	Global change community ecology beyond speciesâ€sorting: a quantitative framework based on mediterraneanâ€biome examples. Global Ecology and Biogeography, 2014, 23, 1062-1072.	2.7	8
84	Combining population genetics, species distribution modelling and field assessments to understand a species vulnerability to climate change. Austral Ecology, 2014, 39, 17-28.	0.7	22
85	Higher Levels of Multiple Paternities Increase Seedling Survival in the Long-Lived Tree Eucalyptus gracilis. PLoS ONE, 2014, 9, e90478.	1.1	25
86	Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conservation Genetics, 2013, 14, 1-10.	0.8	290
87	Does aggression and explorative behaviour decrease with lost warning coloration?. Biological Journal of the Linnean Society, 2013, 108, 116-126.	0.7	33
88	Pollen diversity matters: revealing the neglected effect of pollen diversity on fitness in fragmented landscapes. Molecular Ecology, 2012, 21, 5955-5968.	2.0	57
89	Trapped in desert springs: phylogeography of Australian desert spring snails. Journal of Biogeography, 2012, 39, 1573-1582.	1.4	47
90	Shifts in reproductive assurance strategies and inbreeding costs associated with habitat fragmentation in Central American mahogany. Ecology Letters, 2012, 15, 444-452.	3.0	55

#	Article	IF	CITATIONS
91	Clarifying climate change adaptation responses for scattered trees in modified landscapes. Journal of Applied Ecology, 2011, 48, 637-641.	1.9	32
92	Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications, 2011, 4, 709-725.	1.5	661
93	Evidence of Endemic Hendra Virus Infection in Flying-Foxes (Pteropus conspicillatus)—Implications for Disease Risk Management. PLoS ONE, 2011, 6, e28816.	1.1	53
94	Bolivar Wastewater Treatment Plant provides an important habitat for South Australian ducks and waders. , 0, 37, 190-199.		2