Dong Yue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1346283/publications.pdf

Version: 2024-02-01

20797 24961 13,044 200 60 109 citations h-index papers

g-index 203 203 203 5193 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Delay System Method for Designing Event-Triggered Controllers of Networked Control Systems. IEEE Transactions on Automatic Control, 2013, 578, 475, 481 "inline" overflow="scroll" Network-based robust < mmi: math altimg="si2:gi8", display="inline" overflow="scroll" "http://www.control.com/scrollers/" "http://www.	3.6	1,356
2	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/struct-bib/dtd	3.0	1,022
3	Systems Part 2: Express Briefs, 2004, 51, 640-644.	2.3	715
4	To Transmit or Not to Transmit: A Discrete Event-Triggered Communication Scheme for Networked Takagi–Sugeno Fuzzy Systems. IEEE Transactions on Fuzzy Systems, 2013, 21, 164-170.	6.5	325
5	Resilient Event-Triggered Controller Synthesis of Networked Control Systems Under Periodic DoS Jamming Attacks. IEEE Transactions on Cybernetics, 2019, 49, 4271-4281.	6.2	294
6	Networked control systems: a survey of trends and techniques. IEEE/CAA Journal of Automatica Sinica, 2020, 7, 1-17.	8.5	258
7	Delayed feedback control of uncertain systems with time-varying input delay. Automatica, 2005, 41, 233-240.	3.0	246
8	Control Synthesis of Discrete-Time T–S Fuzzy Systems via a Multi-Instant Homogenous Polynomial Approach. IEEE Transactions on Cybernetics, 2016, 46, 630-640.	6.2	237
9	Observer-Based Event-Triggered Control for Networked Linear Systems Subject to Denial-of-Service Attacks. IEEE Transactions on Cybernetics, 2020, 50, 1952-1964.	6.2	231
10	Delay-Distribution-Dependent Stability and Stabilization of T–S Fuzzy Systems With Probabilistic Interval Delay. IEEE Transactions on Systems, Man, and Cybernetics, 2009, 39, 503-516.	5. 5	201
11	Stabilization of Systems With Probabilistic Interval Input Delays and Its Applications to Networked Control Systems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2009, 39, 939-945.	3.4	186
12	Relaxed Control Design of Discrete-Time Takagi–Sugeno Fuzzy Systems: An Event-Triggered Real-Time Scheduling Approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 2251-2262.	5.9	175
13	Relaxed Real-Time Scheduling Stabilization of Discrete-Time Takagi–Sugeno Fuzzy Systems via An Alterable-Weights-Based Ranking Switching Mechanism. IEEE Transactions on Fuzzy Systems, 2018, 26, 3808-3819.	6.5	171
14	Delay-dependent robust Hâ^ž control for T–S fuzzy system with interval time-varying delay. Fuzzy Sets and Systems, 2009, 160, 1708-1719.	1.6	168
15	Probabilisticâ€constrained filtering for a class of nonlinear systems with improved static eventâ€triggered communication. International Journal of Robust and Nonlinear Control, 2019, 29, 1484-1498.	2.1	161
16	Resilient control of networked control systems under deception attacks: A memoryâ€eventâ€triggered communication scheme. International Journal of Robust and Nonlinear Control, 2020, 30, 1534-1548.	2.1	151
17	Distributed Resilient Finite-Time Secondary Control for Heterogeneous Battery Energy Storage Systems Under Denial-of-Service Attacks. IEEE Transactions on Industrial Informatics, 2020, 16, 4909-4919.	7.2	148
18	Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings. IEEE Transactions on Smart Grid, 2021, 12, 407-419.	6.2	148

#	ARTICLE Chance-constrained <mmi:math altimg="si6.svg" dle701"="" xmins:mmi="http://www.w3.org/1998/iviath/i</th><th>IF</th><th>CITATIONS</th></tr><tr><th>19</th><th>id="><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>â^ž<th>:n3i0<th>าไ:เมสวังพ><!--ก</th--></th></th></mml:mi></mml:mrow></mml:msub></mmi:math>	:n 3i 0 <th>าไ:เมสวังพ><!--ก</th--></th>	า ไ:เมสว ังพ> ก</th
20	Automatica, 2019, 107, 296-305. A piecewise analysis method to stability analysis of linear continuous/discrete systems with timeâ€varying delay. International Journal of Robust and Nonlinear Control, 2009, 19, 1493-1518.	2.1	144
21	Decentralized Adaptive Event-Triggered \$H_infty\$ Filtering for a Class of Networked Nonlinear Interconnected Systems. IEEE Transactions on Cybernetics, 2019, 49, 1570-1579.	6.2	144
22	Improved droop control based on virtual impedance and virtual power source in lowâ€voltage microgrid. IET Generation, Transmission and Distribution, 2017, 11, 1046-1054.	1.4	134
23	Multiagent System-Based Distributed Coordinated Control for Radial DC Microgrid Considering Transmission Time Delays. IEEE Transactions on Smart Grid, 2017, 8, 2370-2381.	6.2	132
24	Multi-elite guide hybrid differential evolution with simulated annealing technique for dynamic economic emission dispatch. Applied Soft Computing Journal, 2015, 34, 312-323.	4.1	131
25	On designing of an adaptive event-triggered communication scheme for nonlinear networked interconnected control systems. Information Sciences, 2018, 422, 257-270.	4.0	127
26	Relaxed Stability and Stabilization Conditions of Networked Fuzzy Control Systems Subject to Asynchronous Grades of Membership. IEEE Transactions on Fuzzy Systems, 2014, 22, 1101-1112.	6.5	126
27	Adaptive periodic event-triggered consensus for multi-agent systems subject to input saturation. International Journal of Control, 2016, 89, 653-667.	1.2	126
28	Event-Based Secure Leader-Following Consensus Control for Multiagent Systems With Multiple Cyber Attacks. IEEE Transactions on Cybernetics, 2021, 51, 162-173.	6.2	122
29	Attack-Resilient Event-Triggered Controller Design of DC Microgrids Under DoS Attacks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 699-710.	3.5	112
30	Reliable <i>H</i> _{â^žâ€‰} filter design for T–S fuzzy modelâ€based networked control system with random sensor failure. International Journal of Robust and Nonlinear Control, 2013, 23, 15-32.	S 2.1	107
31	Distributed Secure Consensus Control With Event-Triggering for Multiagent Systems Under DoS Attacks. IEEE Transactions on Cybernetics, 2021, 51, 2916-2928.	6.2	107
32	Multi-Instant Observer Design of Discrete-Time Fuzzy Systems: A Ranking-Based Switching Approach. IEEE Transactions on Fuzzy Systems, 2017, 25, 1281-1292.	6.5	103
33	Hybrid-Driven-Based \${mathcal{H}}_infty\$ Control for Networked Cascade Control Systems With Actuator Saturations and Stochastic Cyber Attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 2452-2463.	5.9	103
34	Stabilization of Networked Control Systems With Hybrid-Driven Mechanism and Probabilistic Cyber Attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 943-953.	5.9	100
35	MAS-Based Management and Control Strategies for Integrated Hybrid Energy System. IEEE Transactions on Industrial Informatics, 2016, 12, 1332-1349.	7.2	98
36	H-Infinity Stabilization for Singular Networked Cascade Control Systems With State Delay and Disturbance. IEEE Transactions on Industrial Informatics, 2014, 10, 882-894.	7.2	97

#	Article	IF	Citations
37	Adaptive eventâ€triggered control for nonlinear discreteâ€time systems. International Journal of Robust and Nonlinear Control, 2016, 26, 4104-4125.	2.1	97
38	Output Feedback Control of Discrete-Time Systems in Networked Environments. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2011, 41, 185-190.	3.4	92
39	Event-Triggered <i>H_{â^ž} </i> Filtering for T–S Fuzzy-Model-Based Nonlinear Networked Systems With Multisensors Against DoS Attacks. IEEE Transactions on Cybernetics, 2022, 52, 5311-5321.	6.2	91
40	Secure Adaptive-Event-Triggered Filter Design With Input Constraint and Hybrid Cyber Attack. IEEE Transactions on Cybernetics, 2021, 51, 4000-4010.	6.2	90
41	Security Control for T–S Fuzzy Systems With Adaptive Event-Triggered Mechanism and Multiple Cyber-Attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 6544-6554.	5.9	89
42	A Note on Observers for Discrete-Time Lipschitz Nonlinear Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59, 123-127.	2.2	88
43	Fault Estimation Observer Design for Discrete-Time Takagi–Sugeno Fuzzy Systems Based on Homogenous Polynomially Parameter-Dependent Lyapunov Functions. IEEE Transactions on Cybernetics, 2017, 47, 2504-2513.	6.2	88
44	â€Gain analysis of eventâ€triggered networked control systems: a discontinuous Lyapunov functional approach. International Journal of Robust and Nonlinear Control, 2013, 23, 1277-1300.	2.1	87
45	Co-Design of Dynamic Event-Triggered Communication Scheme and Resilient Observer-Based Control Under Aperiodic DoS Attacks. IEEE Transactions on Cybernetics, 2021, 51, 4591-4601.	6.2	84
46	Observer Design of Discrete-Time Fuzzy Systems Based on an Alterable Weights Method. IEEE Transactions on Cybernetics, 2020, 50, 1430-1439.	6.2	77
47	Communication-Delay-Distribution-Dependent Decentralized Control for Large-Scale Systems With IP-Based Communication Networks. IEEE Transactions on Control Systems Technology, 2013, 21, 820-830.	3.2	75
48	An adaptive eventâ€triggering scheme for networked interconnected control system with stochastic uncertainty. International Journal of Robust and Nonlinear Control, 2017, 27, 236-251.	2.1	74
49	Decentralized adaptive neural output feedback control of a class of large-scale time-delay systems with input saturation. Journal of the Franklin Institute, 2015, 352, 2129-2151.	1.9	72
50	A Higher Energy-Efficient Sampling Scheme for Networked Control Systems over IEEE 802.15.4 Wireless Networks. IEEE Transactions on Industrial Informatics, 2016, 12, 1766-1774.	7.2	72
51	Data-Driven Distributed Optimal Consensus Control for Unknown Multiagent Systems With Input-Delay. IEEE Transactions on Cybernetics, 2019, 49, 2095-2105.	6.2	72
52	Memory-Based Continuous Event-Triggered Control for Networked T–S Fuzzy Systems Against Cyberattacks. IEEE Transactions on Fuzzy Systems, 2021, 29, 3118-3129.	6.5	71
53	Distributed Event-Triggered Cooperative Control for Frequency and Voltage Stability and Power Sharing in Isolated Inverter-Based Microgrid. IEEE Transactions on Cybernetics, 2019, 49, 1427-1439.	6.2	69
54	Decentralized control of networkâ€based interconnected systems: A stateâ€dependent triggering method. International Journal of Robust and Nonlinear Control, 2015, 25, 1126-1144.	2.1	68

#	Article	IF	Citations
55	Event-Triggered Security Output Feedback Control for Networked Interconnected Systems Subject to Cyber-Attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 6197-6206.	5.9	68
56	Distributed Resilient Secondary Control for DC Microgrids Against Heterogeneous Communication Delays and DoS Attacks. IEEE Transactions on Industrial Electronics, 2022, 69, 11560-11568.	5.2	68
57	Observer-Based Distributed Secure Consensus Control of a Class of Linear Multi-Agent Systems Subject to Random Attacks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 3089-3099.	3.5	67
58	Semi-Supervised Multi-View Deep Discriminant Representation Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 2496-2509.	9.7	67
59	MAS-Based Distributed Cooperative Control for DC Microgrid Through Switching Topology Communication Network With Time-Varying Delays. IEEE Systems Journal, 2019, 13, 615-624.	2.9	66
60	Distributed event-triggered consensus of multi-agent systems under periodic DoS jamming attacks. Neurocomputing, 2020, 400, 458-466.	3.5	66
61	Prescribed Performance Tracking Control of a Class of Uncertain Pure-Feedback Nonlinear Systems With Input Saturation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 1733-1745.	5.9	61
62	Model-Based Event-Triggered Predictive Control for Networked Systems with Data Dropout. SIAM Journal on Control and Optimization, 2016, 54, 567-586.	1.1	59
63	Resilient Hâ^ž Filtering for Event-Triggered Networked Systems Under Nonperiodic DoS Jamming Attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, , 1-12.	5.9	57
64	Distributed eventâ€triggered state estimators design for sensor networked systems with deception attacks. IET Control Theory and Applications, 2019, 13, 2783-2791.	1.2	55
65	Resilient Load Frequency Control of Cyber-Physical Power Systems Under QoS-Dependent Event-Triggered Communication. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 2113-2122.	5.9	55
66	Delay-Tolerant Predictive Power Compensation Control for Photovoltaic Voltage Regulation. IEEE Transactions on Industrial Informatics, 2021, 17, 4545-4554.	7.2	55
67	Modelâ€based eventâ€triggered predictive control for networked systems with communication delays compensation. International Journal of Robust and Nonlinear Control, 2015, 25, 3572-3595.	2.1	54
68	Distributed adaptive output consensus control of a class of heterogeneous multi-agent systems under switching directed topologies. Information Sciences, 2016, 345, 294-312.	4.0	53
69	Resilient load frequency control design: DoS attacks against additional control loop. International Journal of Electrical Power and Energy Systems, 2020, 115, 105496.	3.3	52
70	Gradient decent based multi-objective cultural differential evolution for short-term hydrothermal optimal scheduling of economic emission with integrating wind power and photovoltaic power. Energy, 2017, 122, 748-766.	4.5	51
71	Distributed Optimal Consensus Control for Multiagent Systems With Input Delay. IEEE Transactions on Cybernetics, 2018, 48, 1747-1759.	6.2	51
72	Predictive Voltage Hierarchical Controller Design for Islanded Microgrids Under Limited Communication. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 933-945.	3.5	51

#	Article	IF	Citations
73	MSCFNet: A Lightweight Network With Multi-Scale Context Fusion for Real-Time Semantic Segmentation. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 25489-25499.	4.7	50
74	Output Feedback Stabilization of Networked Control Systems Under a Stochastic Scheduling Protocol. IEEE Transactions on Cybernetics, 2020, 50, 2851-2860.	6.2	49
75	An Event-Triggered Secondary Control Strategy With Network Delay in Islanded Microgrids. IEEE Systems Journal, 2019, 13, 1851-1860.	2.9	46
76	Multiagent System-Based Event-Triggered Hybrid Controls for High-Security Hybrid Energy Generation Systems. IEEE Transactions on Industrial Informatics, 2017, 13, 584-594.	7.2	43
77	Adaptive Event-Triggered Consensus Control of a Class of Second-Order Nonlinear Multiagent Systems. IEEE Transactions on Cybernetics, 2020, 50, 5010-5020.	6.2	43
78	Observer-Based Decentralized Adaptive NNs Fault-Tolerant Control of a Class of Large-Scale Uncertain Nonlinear Systems With Actuator Failures. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 528-542.	5.9	42
79	Adaptive neural network consensus tracking control for uncertain multi-agent systems with predefined accuracy. Nonlinear Dynamics, 2020, 101, 2249-2262.	2.7	42
80	Event-triggered dynamic output feedback control for networked control systems with probabilistic nonlinearities. Information Sciences, 2018, 457-458, 99-112.	4.0	41
81	Event-trigger-based consensus secure control of linear multi-agent systems under DoS attacks over multiple transmission channels. Science China Information Sciences, 2020, 63, 1.	2.7	41
82	Resilient Distributed Coordination Control of Multiarea Power Systems Under Hybrid Attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 7-18.	5.9	41
83	Similarity-Maintaining Privacy Preservation and Location-Aware Low-Rank Matrix Factorization for QoS Prediction Based Web Service Recommendation. IEEE Transactions on Services Computing, 2021, 14, 889-902.	3.2	39
84	Attack-Resilient Event-Triggered Fuzzy Interval Type-2 Filter Design for Networked Nonlinear Systems Under Sporadic Denial-of-Service Jamming Attacks. IEEE Transactions on Fuzzy Systems, 2022, 30, 190-204.	6.5	37
85	Interval Type-2 Fuzzy Local Enhancement Based Rough K-Means Clustering Considering Imbalanced Clusters. IEEE Transactions on Fuzzy Systems, 2020, 28, 1925-1939.	6.5	36
86	Multi-View Stacking Ensemble for Power Consumption Anomaly Detection in the Context of Industrial Internet of Things. IEEE Access, 2018, 6, 9623-9631.	2.6	35
87	Event-Based Secure Control of T–S Fuzzy-Based 5-DOF Active Semivehicle Suspension Systems Subject to DoS Attacks. IEEE Transactions on Fuzzy Systems, 2022, 30, 2032-2043.	6.5	35
88	Event-Triggered Practical Fixed-Time Fuzzy Containment Control for Stochastic Multiagent Systems. IEEE Transactions on Fuzzy Systems, 2022, 30, 3052-3062.	6.5	35
89	Time-Varying Formation Tracking With Prescribed Performance for Uncertain Nonaffine Nonlinear Multiagent Systems. IEEE Transactions on Automation Science and Engineering, 2021, 18, 1778-1789.	3.4	33
90	Observer-Based Containment Control for a Class of Nonlinear Multiagent Systems With Uncertainties. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 588-600.	5.9	33

#	Article	IF	CITATIONS
91	Quantized control for a class of neural networks with adaptive eventâ€triggered scheme and complex cyberâ€attacks. International Journal of Robust and Nonlinear Control, 2021, 31, 4705-4728.	2.1	33
92	Sampled-data-based fault-tolerant consensus control for multi-agent systems: A data privacy preserving scheme. Automatica, 2021, 133, 109847.	3.0	33
93	Asymptotic and robust stability of Tâ€6 fuzzy genetic regulatory networks with timeâ€varying delays. International Journal of Robust and Nonlinear Control, 2012, 22, 827-840.	2.1	32
94	Robust Fault Estimation Design for Discrete-Time Nonlinear Systems via A Modified Fuzzy Fault Estimation Observer. ISA Transactions, 2018, 73, 22-30.	3.1	32
95	Nearly Optimal Integral Sliding-Mode Consensus Control for Multiagent Systems With Disturbances. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 4741-4750.	5.9	31
96	Memory-Event-Triggered Fault Detection of Networked IT2 Tâ€"S Fuzzy Systems. IEEE Transactions on Cybernetics, 2023, 53, 743-752.	6.2	31
97	Distributed event-triggered cooperative attitude control of multiple rigid bodies with leader–follower architecture. International Journal of Systems Science, 2016, 47, 631-643.	3.7	30
98	Fault Estimation and Fault-Tolerant Control for Networked Systems Based on an Adaptive Memory-Based Event-Triggered Mechanism. IEEE Transactions on Network Science and Engineering, 2021, 8, 3233-3241.	4.1	30
99	Event-Triggered Multiagent Optimization for Two-Layered Model of Hybrid Energy System With Price Bidding-Based Demand Response. IEEE Transactions on Cybernetics, 2021, 51, 2068-2079.	6.2	29
100	A Packet Loss-Dependent Event-Triggered Cyber-Physical Cooperative Control Strategy for Islanded Microgrid. IEEE Transactions on Cybernetics, 2021, 51, 267-282.	6.2	29
101	Event-Triggered Dissipative Tracking Control of Networked Control Systems With Distributed Communication Delay. IEEE Systems Journal, 2022, 16, 3320-3330.	2.9	29
102	Detectionâ€based weighted LFC for multiâ€area power systems under DoS attacks. IET Control Theory and Applications, 2019, 13, 1909-1919.	1.2	28
103	Co-Estimation of State and FDI Attacks and Attack Compensation Control for Multi-Area Load Frequency Control Systems Under FDI and DoS Attacks. IEEE Transactions on Smart Grid, 2022, 13, 2357-2368.	6.2	28
104	Resilient Output Formation Containment of Heterogeneous Multigroup Systems Against Unbounded Attacks. IEEE Transactions on Cybernetics, 2022, 52, 1902-1910.	6.2	27
105	Multiagent System-Based Integrated Design of Security Control and Economic Dispatch for Interconnected Microgrid Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 2101-2112.	5.9	27
106	Resilient Containment of Multigroup Systems Against Unknown Unbounded FDI Attacks. IEEE Transactions on Industrial Electronics, 2022, 69, 2864-2873.	5.2	27
107	Intraspectrum Discrimination and Interspectrum Correlation Analysis Deep Network for Multispectral Face Recognition. IEEE Transactions on Cybernetics, 2020, 50, 1009-1022.	6.2	26
108	Finite-Horizon Optimal Consensus Control for Unknown Multiagent State-Delay Systems. IEEE Transactions on Cybernetics, 2020, 50, 402-413.	6.2	26

#	Article	IF	Citations
109	Distributed adaptive modelâ€based eventâ€triggered predictive control for consensus of multiagent systems. International Journal of Robust and Nonlinear Control, 2018, 28, 6180-6201.	2.1	24
110	NNsâ€Based Eventâ€Triggered Consensus Control of a Class of Uncertain Nonlinear Multiâ€Agent Systems. Asian Journal of Control, 2019, 21, 660-673.	1.9	24
111	Predictor-Based Neural Dynamic Surface Control for Bipartite Tracking of a Class of Nonlinear Multiagent Systems. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 1791-1802.	7.2	24
112	Delayâ€dependent stability analysis for neural networks with additive timeâ€varying delay components. IET Control Theory and Applications, 2013, 7, 354-362.	1.2	23
113	Single Sample Face Recognition Under Varying Illumination via QRCP Decomposition. IEEE Transactions on Image Processing, 2019, 28, 2624-2638.	6.0	23
114	Study on attack paths of cyber attack in cyberâ€physical power systems. IET Generation, Transmission and Distribution, 2020, 14, 2352-2360.	1.4	23
115	Bandwidth Allocation-Based Switched Dynamic Triggering Control Against DoS Attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 6050-6061.	5.9	22
116	Coordinated attitude motion control of multiple rigid bodies on manifold <i>SO</i> (3). IET Control Theory and Applications, 2013, 7, 1984-1991.	1.2	21
117	Asymptotic Behavior and Collision Avoidance in the Cucker–Smale Model. IEEE Transactions on Automatic Control, 2020, 65, 3112-3119.	3.6	21
118	Attack-Tolerant Switched Fault Detection Filter for Networked Stochastic Systems Under Resilient Event-Triggered Scheme. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 1984-1996.	5.9	21
119	Optimal Leader–Follower Consensus for Constrained-Input Multiagent Systems With Completely Unknown Dynamics. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 1182-1191.	5.9	20
120	Evaluation of cyberâ€physical power systems in cascading failure: node vulnerability and systems connectivity. IET Generation, Transmission and Distribution, 2020, 14, 1197-1206.	1.4	20
121	MOEA/D-Based Probabilistic PBI Approach for Risk-Based Optimal Operation of Hybrid Energy System With Intermittent Power Uncertainty. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 2080-2090.	5.9	20
122	Time-Varying Formation Tracking of Uncertain Nonaffine Nonlinear Multiagent Systems With Communication Delays. IEEE Transactions on Industrial Electronics, 2021, 68, 2501-2509.	5.2	19
123	Adaptive PI Control for Consensus of Multiagent Systems With Relative State Saturation Constraints. IEEE Transactions on Cybernetics, 2021, 51, 2296-2302.	6.2	19
124	Secure Frequency Control of Hybrid Power System Under DoS Attacks via Lie Algebra. IEEE Transactions on Information Forensics and Security, 2022, 17, 1172-1184.	4.5	19
125	Observer-Based Consensus of Nonlinear Multiagent Systems With Relative State Estimate Constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 2456-2465.	5.9	18
126	Enhanced Stabilization of Discrete-Time Takagi–Sugeno Fuzzy Systems Based on a Comprehensive Real-Time Scheduling Model. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 881-892.	5.9	18

#	Article	IF	CITATIONS
127	Neural-Networks-Based Prescribed Tracking for Nonaffine Switched Nonlinear Time-Delay Systems. IEEE Transactions on Cybernetics, 2022, 52, 6579-6590.	6.2	18
128	Distributed Control of Multi-Functional Grid-Tied Inverters for Power Quality Improvement. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 918-928.	3.5	18
129	Event-Triggered Hybrid Voltage Regulation With Required BESS Sizing in High-PV-Penetration Networks. IEEE Transactions on Smart Grid, 2022, 13, 2614-2626.	6.2	18
130	Delay-fractioning-dependent robustHâ^žcontrol for linear systems with delay in state or input and its applications. International Journal of Systems Science, 2012, 43, 820-833.	3.7	17
131	A Cyber-Physical Cooperative Hierarchical Control Strategy for Islanded Microgrid Facing With Random Communication Failure. IEEE Systems Journal, 2020, 14, 2849-2860.	2.9	17
132	Attack-Defense Evolutionary Game Strategy for Uploading Channel in Consensus-Based Secondary Control of Islanded Microgrid Considering DoS Attack. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 821-834.	3.5	17
133	Resilient Load Frequency Control of Islanded AC Microgrids Under Concurrent False Data Injection and Denial-of-Service Attacks. IEEE Transactions on Smart Grid, 2023, 14, 690-700.	6.2	17
134	Dataâ€driven optimal eventâ€triggered consensus control for unknown nonlinear multiagent systems with control constraints. International Journal of Robust and Nonlinear Control, 2019, 29, 4828-4844.	2.1	16
135	Consensus of Lipschitz Nonlinear Multiagent Systems With Input Delay via Observer-Based Truncated Prediction Feedback. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, , 1-11.	5.9	16
136	Adaptive optimal tracking control for nonlinear continuous-time systems with time delay using value iteration algorithm. Neurocomputing, 2020, 396, 172-178.	3.5	16
137	Distributed Model Predictive Control for Hybrid Energy Resource System With Large-Scale Decomposition Coordination Approach. IEEE Access, 2016, 4, 9332-9344.	2.6	15
138	Secure distributed optimal frequency regulation of power grid with timeâ€varying voltages under cyberattack. International Journal of Robust and Nonlinear Control, 2020, 30, 894-909.	2.1	15
139	DMPC-Based Coordinated Voltage Control for Integrated Hybrid Energy System. IEEE Transactions on Industrial Informatics, 2021, 17, 6786-6797.	7.2	15
140	Resilient dynamic eventâ€triggered control for multiâ€area power systems with renewable energy penetration under DoS attacks. IET Control Theory and Applications, 2020, 14, 2267-2279.	1.2	15
141	Tracking Control Under Round-Robin Scheduling: Handling Impulsive Transmission Outliers. IEEE Transactions on Cybernetics, 2023, 53, 2288-2300.	6.2	15
142	Neighbor-prediction-based networked hierarchical control in islanded microgrids. International Journal of Electrical Power and Energy Systems, 2019, 104, 734-743.	3.3	14
143	Consensus of Multiagent Systems With Time-Varying Input Delay via Truncated Predictor Feedback. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 6062-6073.	5.9	14
144	Security control of cyber–physical system based on switching approach for intermittent denial-of-service jamming attack. ISA Transactions, 2020, 104, 53-61.	3.1	13

#	Article	IF	CITATIONS
145	Consensus of Multiagent Systems With Time-Varying Input Delay and Relative State Saturation Constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 6938-6944.	5.9	13
146	Economic-Driven Hierarchical Voltage Regulation of Incremental Distribution Networks: A Cloud-Edge Collaboration Based Perspective. IEEE Transactions on Industrial Informatics, 2022, 18, 1746-1757.	7.2	13
147	Adaptive Tracking for Uncertain Switched Nonlinear Systems With Prescribed Performance Under Slow Switching. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 7279-7288.	5.9	13
148	Stochastic Finite-Time Stability of Nonlinear Markovian Switching Systems With Impulsive Effects. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2012, 134, .	0.9	12
149	Consensus of Multiagent Systems With Relative State Saturations. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 2391-2402.	5.9	12
150	Cyber-physical cooperative response strategy for consensus-based hierarchical control in micro-grid facing with communication interruption. International Journal of Electrical Power and Energy Systems, 2020, 114, 105405.	3.3	11
151	A Virtual Complex Impedance based P $\hat{a} \in \mathcal{C}$ V Droop Method for Parallel-connected Inverters in Low-voltage AC Microgrids. IEEE Transactions on Industrial Informatics, 2020, , 1-1.	7.2	11
152	State Estimation for Discrete Time-Delayed Impulsive Neural Networks Under Communication Constraints: A Delay-Range-Dependent Approach. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 1489-1501.	7.2	11
153	Two-Step Wind Power Prediction Approach With Improved Complementary Ensemble Empirical Mode Decomposition and Reinforcement Learning. IEEE Systems Journal, 2022, 16, 2545-2555.	2.9	11
154	Resilient Optimal Defensive Strategy of TSK Fuzzy-Model-Based Microgrids' System via a Novel Reinforcement Learning Approach. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 1921-1931.	7.2	10
155	Voltage Regulation With High Penetration of Low-Carbon Energy in Distribution Networks: A Source–Grid–Load-Collaboration-Based Perspective. IEEE Transactions on Industrial Informatics, 2022, 18, 3987-3999.	7.2	10
156	Cloud-Based Event-Triggered Predictive Control for Heterogeneous NMASs Under Both DoS Attacks and Transmission Delays. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 7482-7493.	5.9	10
157	Robust reliable control for systems with random actuator fault and probabilistic nonlinearity with new characters. International Journal of Robust and Nonlinear Control, 2013, 23, 2013-2027.	2.1	9
158	Two-Stage Optimal Operation Strategy of Isolated Microgrid With TSK Fuzzy Identification of Supply Security. IEEE Transactions on Industrial Informatics, 2020, 16, 3731-3743.	7.2	9
159	Resilient Optimal Defensive Strategy of Micro-Grids System via Distributed Deep Reinforcement Learning Approach Against FDI Attack. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 598-608.	7.2	8
160	Cooperative Fault-Tolerant Control for a Class of Nonlinear MASs by Resilient Learning Approach. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 670-679.	7.2	8
161	Stochastic faulty actuatorâ€based reliable control for a class of interval timeâ€varying delay systems with Markovian jumping parameters. Optimal Control Applications and Methods, 2011, 32, 313-327.	1.3	7
162	Output-Based Containment Control for Uncertain Nonaffine Nonlinear Multiagent Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 5992-6002.	5.9	7

#	Article	IF	CITATIONS
163	Static and Dynamic Event-Triggered Mechanisms for Distributed Secondary Control of Inverters in Low-Voltage Islanded Microgrids. IEEE Transactions on Cybernetics, 2022, 52, 6925-6938.	6.2	7
164	Resilient control design for networked DC microgrids under time-constrained DoS attacks. ISA Transactions, 2022, 127, 197-205.	3.1	7
165	<i>H</i> _{â^ž} filtering for discrete-time systems subject to stochastic missing measurements: a decomposition approach. International Journal of Systems Science, 2014, 45, 1356-1363.	3.7	6
166	Predictorâ€based bipartite timeâ€varying formation control of nonlinear multiâ€agents systems via disturbance observer. International Journal of Robust and Nonlinear Control, 2022, 32, 5694-5716.	2.1	6
167	Adaptive observer protocol designs for consensus tracking of multiâ€agent systems. IET Control Theory and Applications, 2022, 16, 1373-1381.	1.2	5
168	Stochastic Data-Based Denial-of-Service Attack Strategy Design Against Remote State Estimation in Interval Type-2 T–S Fuzzy Systems. IEEE Transactions on Fuzzy Systems, 2023, 31, 825-834.	6.5	5
169	Photovoltaic Voltage Regulation through Distributed Power Compensation Considering Communication Delay. Advanced Theory and Simulations, 2020, 3, 1900148.	1.3	4
170	Two-Layered Hierarchical Optimization Strategy With Distributed Potential Game for Interconnected Hybrid Energy Systems. IEEE Transactions on Cybernetics, 2023, 53, 5436-5447.	6.2	4
171	A Cross-Scanning Crack Damage Quantitative Monitoring and Imaging Method. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	2.4	4
172	A Three-Stage Optimal Operation Strategy of Interconnected Microgrids With Rule-Based Deep Deterministic Policy Gradient Algorithm. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 1773-1784.	7.2	4
173	A discrete event-triggered communication scheme for networked T-S fuzzy systems. , 2011, , .		3
174	Event-triggered adaptive approximately optimal tracking control of a class of non-affine SISO nonlinear systems via output feedback. International Journal of Systems Science, 2022, 53, 223-239.	3.7	3
175	Convergence of velocities for the short range communicated discrete-time Cucker–Smale model. Automatica, 2021, 129, 109659.	3.0	3
176	A Very-Short-Term Online PV Power Prediction Model Based on RAN With Secondary Dynamic Adjustment. IEEE Transactions on Artificial Intelligence, 2023, 4, 1214-1224.	3.4	3
177	Comments on "Decentralized Stabilization of Interconnected Systems With Time-Varying Delays― IEEE Transactions on Automatic Control, 2012, 57, 809-810.	3 . 6	2
178	Control Strategy for Multi-Functional Grid-Tied Inverters Based on Conservative Power Theory. , 2018, , .		2
179	Robust fault estimation of discrete-time nonlinear system based on an enhanced maximum-priority-based switching law. Journal of the Franklin Institute, 2020, 357, 5073-5090.	1.9	2
180	Predictor-Based Neural Dynamic Surface Control for Strict-Feedback Nonlinear Systems With Unknown Control Gains. IEEE Transactions on Cybernetics, 2023, 53, 4677-4690.	6.2	2

#	Article	IF	CITATIONS
181	Robust H <inf>∞</inf> control for networked control systems with limited media access channel., 2011,,.		1
182	Networked Systems with Complexities and Their Applications to Engineering. Mathematical Problems in Engineering, $2013, 2013, 1-1$.	0.6	1
183	Parallel Attribute Reduction Algorithm for Complex Heterogeneous Data Using MapReduce. Complexity, 2018, 2018, 1-11.	0.9	1
184	Adaptive Neural Output Consensus Control of Stochastic Nonlinear Strict-Feedback Multi-Agent Systems *., 2018, , .		1
185	Observer-based event-triggered leader-following control of a class of linear multi-agent systems. International Journal of Systems Science, 2018, 49, 2536-2547.	3.7	1
186	Distributed Secondary Control for Microgrids with Heterogeneous Battery Energy Storage Systems Under Switching Communication Topology. , 2019 , , .		1
187	Optimal HVAC Control in Shared Office Spaces Based on Deep Reinforcement Learning. , 2021, , .		1
188	Distributed Resilient Self-Triggered Cooperative Control for Multiple Photovoltaic Generators Under Denial-of-Service Attack. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53, 226-237.	5.9	1
189	Pinning Control of Weighted General Complex Dynamical Networks with Coupling Delays. , 2008, , .		0
190	Synchronization Criteria of Complex Dynamical Networks with Time-varying Delays. , 2008, , .		0
191	Delay-fractioning-dependent Robust stabilization of nonlinear networked control systems. , 2010, , .		0
192	Self-organization strategy for hybrid agent-based intelligent network. , 2011, , .		0
193	Micro-grid Power Market Bidding System Based on Multi-agent Technology. , 2018, , .		0
194	Observerâ€based adaptive DSC with nonlinear gain and recursive sliding mode for nonâ€affine nonlinear systems. Asian Journal of Control, 2021, 23, 990-1002.	1.9	0
195	Resilient Dynamic Event-Triggered Control for Multi-area Power Systems with Renewable Energy Penetration Under Nonperiodic DoS Attacks. , 2021, , 195-224.		0
196	Event-Based Secure Leader-Following Consensus Control for Multiagent Systems With Multiple Cyber Attacks., 2021,, 101-123.		0
197	Multiagent System-Based Integrated Design of Security Control and Economic Dispatch for Interconnected Microgrid Systems., 2021,, 269-295.		0
198	Overview of Multiagent Systems Cooperation. , 2021, , 1-13.		0

#	Article	IF	CITATIONS
199	Bandwidth Allocation-Based Switched Dynamic Triggering Control Against Nonperiodic DoS Attacks. , 2021, , 147-171.		o
200	An improved <scp>curveâ€shaped</scp> droop control method for islanded microgrid under heavy load disturbance. International Transactions on Electrical Energy Systems, 2021, 31, e13184.	1,2	0