Heidi M Luter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1346165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phototrophic sponge productivity may not be enhanced in a high <scp>CO₂</scp> world. Global Change Biology, 2022, 28, 4900-4911.	9.5	3
2	Impacts of water quality on Acropora coral settlement: The relative importance of substrate quality and light. Science of the Total Environment, 2021, 777, 146079.	8.0	14
3	Assessing the risk of light reduction from natural sediment resuspension events and dredging activities in an inshore turbid reef environment. Marine Pollution Bulletin, 2021, 170, 112536.	5.0	9
4	Derivation of toxicity thresholds for gas condensate oils protective of tropical species using experimental and modelling approaches. Marine Pollution Bulletin, 2021, 172, 112899.	5.0	9
5	Underwater Light Characteristics of Turbid Coral Reefs of the Inner Central Great Barrier Reef. Frontiers in Marine Science, 2021, 8, .	2.5	4
6	Evidence for genetic structuring and limited dispersal ability in the Great Barrier Reef sponge Carteriospongia foliascens. Coral Reefs, 2020, 39, 39-46.	2.2	5
7	Simulated future conditions of ocean warming and acidification disrupt the microbiome of the calcifying foraminifera <scp><i>Marginopora vertebralis</i></scp> across life stages. Environmental Microbiology Reports, 2020, 12, 693-701.	2.4	5
8	Crossâ€generational effects of climate change on the microbiome of a photosynthetic sponge. Environmental Microbiology, 2020, 22, 4732-4744.	3.8	21
9	Responses of corals to chronic turbidity. Scientific Reports, 2020, 10, 4762.	3.3	41
10	Gene correlation networks reveal the transcriptomic response to elevated nitrogen in a photosynthetic sponge. Molecular Ecology, 2020, 29, 1452-1462.	3.9	4
11	Key biological responses over two generations of the sea urchin Echinometra sp. A under future ocean conditions. Marine Ecology - Progress Series, 2020, 637, 87-101.	1.9	17
12	Effects of sediment resuspension on the larval stage of the model sponge Carteriospongia foliascens. Science of the Total Environment, 2019, 695, 133837.	8.0	12
13	The Effects of Crude Oil and Dispersant on the Larval Sponge Holobiont. MSystems, 2019, 4, .	3.8	11
14	Comparative toxicity of five dispersants to coral larvae. Scientific Reports, 2018, 8, 3043.	3.3	21
15	In situ responses of the sponge microbiome to ocean acidification. FEMS Microbiology Ecology, 2018, 94, .	2.7	6
16	Climate change alterations to ecosystem dominance: how might spongeâ€dominated reefs function?. Ecology, 2018, 99, 1920-1931.	3.2	56
17	Microbiome analysis of a disease affecting the deep-sea sponge Geodia barretti. FEMS Microbiology Ecology, 2017, 93, .	2.7	36
18	Sponge Disease and Climate Change. , 2017, , 411-428.		15

Heidi M Luter

#	Article	IF	CITATIONS
19	The response of a boreal deep-sea sponge holobiont to acute thermal stress. Scientific Reports, 2017, 7, 1660.	3.3	67
20	Diversity, structure and convergent evolution of the global sponge microbiome. Nature Communications, 2016, 7, 11870.	12.8	594
21	Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef. PLoS ONE, 2016, 11, e0153184.	2.5	6
22	Biogeographic variation in the microbiome of the ecologically important sponge, <i>Carteriospongia foliascens</i> . PeerJ, 2015, 3, e1435.	2.0	42
23	Eutrophication has no short-term effect on the Cymbastela stipitata holobiont. Frontiers in Microbiology, 2014, 5, 216.	3.5	60
24	Multiple approaches to microbial source tracking in tropical northern Australia. MicrobiologyOpen, 2014, 3, 860-874.	3.0	31
25	Cryptic speciation and phylogeographic relationships in the elephant ear sponge <i>lanthella basta</i> (Porifera, lanthellidae) from northern Australia. Zoological Journal of the Linnean Society, 2012, 166, 225-235.	2.3	22
26	Qualitative variation in colour morphotypes of Ianthella basta (Porifera: Verongida). Hydrobiologia, 2012, 687, 191-203.	2.0	12
27	The marine sponge Ianthella basta can recover from stress-induced tissue regression. Hydrobiologia, 2012, 687, 227-235.	2.0	26
28	Same, same but different: symbiotic bacterial associations in GBR sponges. Frontiers in Microbiology, 2012, 3, 444.	3.5	52
29	Thermal and Sedimentation Stress Are Unlikely Causes of Brown Spot Syndrome in the Coral Reef Sponge, lanthella basta. PLoS ONE, 2012, 7, e39779.	2.5	58
30	The marine sponge lanthella basta can recover from stress-induced tissue regression. , 2011, , 227-235.		2
31	Qualitative variation in colour morphotypes of lanthella basta (Porifera: Verongida). , 2011, , 191-203.		0
32	Influence of size and spatial competition on the bioactivity of coral reef sponges. Biochemical Systematics and Ecology, 2010, 38, 146-153.	1.3	9
33	Exploring the Role of Microorganisms in the Disease-Like Syndrome Affecting the Sponge <i>Ianthella basta</i> . Applied and Environmental Microbiology, 2010, 76, 5736-5744.	3.1	56
34	Prevalence of tissue necrosis and brown spot lesions in a common marine sponge. Marine and Freshwater Research, 2010, 61, 484.	1.3	25
35	Patterns of abundance and size across varying spatial scales for the coral reef sponge Coscinoderma matthewsi. Marine Ecology - Progress Series, 2009, 396, 27-33.	1.9	6
36	Cytotoxic and anti-microbial activity of the spongelotrochotasp. as a function of size and spatial competitors. Marine Biology Research, 2007, 3, 312-318.	0.7	5