
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1345988/publications.pdf Version: 2024-02-01

OINCMINH

#	Article	IF	CITATIONS
1	Tailoring co-doping of cobalt and nitrogen in a fullerene-based carbon composite and its effect on the supercapacitive performance. Materials Advances, 2022, 3, 1539-1546.	2.6	5
2	Tailoring the Mechanical Performance of Carbon Nanotubes Buckypaper by Aramid Nanofibers towards Robust and Compact Supercapacitor Electrode. Advanced Functional Materials, 2022, 32, .	7.8	32
3	Coordinated regulation of phosphorus/nitrogen doping in fullerene-derived hollow carbon spheres and their synergistic effect for the oxygen reduction reaction. Nanoscale, 2022, 14, 10389-10398.	2.8	6
4	Phase Engineering of Epitaxial Stanene on a Surface Alloy. Journal of Physical Chemistry Letters, 2021, 12, 211-217.	2.1	6
5	Lateral epitaxial growth of two-dimensional heterostructure linked by gold adatoms. Nano Research, 2021, 14, 887-892.	5.8	3
6	Sensitive colorimetric glucose sensor by iron-based nanozymes with controllable Fe valence. Journal of Materials Chemistry B, 2021, 9, 4726-4734.	2.9	13
7	High strength and flexible aramid nanofiber conductive hydrogels for wearable strain sensors. Journal of Materials Chemistry C, 2021, 9, 575-583.	2.7	60
8	Mechanically Strong Double-Layered Aramid Nanofibers/MWCNTs/PANI Film Electrode for Flexible Supercapacitor. Journal of the Electrochemical Society, 2021, 168, 020513.	1.3	18
9	Selfâ€assembled fullerene (C ₆₀)â€pentacene superstructures for photodetectors. SmartMat, 2021, 2, 109-118.	6.4	39
10	Monitoring the Release of Silver from a Supramolecular Fullerene C60-AgNO3 Nanomaterial. Bulletin of the Chemical Society of Japan, 2021, 94, 1347-1354.	2.0	17
11	Modulation on the Iron Centers by Selective Synthesis of Organic Ligands with Stereo‧pecific Conformations. Small, 2021, 17, e2008036.	5.2	2
12	Atomic mechanism of the phase transition in monolayer bismuthene on copper oxide. Physical Review Materials, 2021, 5, .	0.9	4
13	Chiral Recognition on Bare Gold Surfaces by Quartz Crystal Microbalance. Angewandte Chemie - International Edition, 2021, 60, 25028-25033.	7.2	6
14	Chiral Recognition on Bare Gold Surfaces by Quartz Crystal Microbalance. Angewandte Chemie, 2021, 133, 25232-25237.	1.6	1
15	Functional 3D nanoporous Fe-based alloy from metallic glass for high-efficiency water splitting and wastewater treatment. Journal of Non-Crystalline Solids, 2021, 571, 121070.	1.5	9
16	Effective fenton catalyst from controllable framework doping of Fe in porous silica spheres. Microporous and Mesoporous Materials, 2021, 312, 110704.	2.2	10
17	Experimental Realization and Phase Engineering of a Two-Dimensional SnSb Binary Honeycomb Lattice. ACS Nano, 2021, 15, 16335-16343.	7.3	5
18	Two-Dimensional Iron Oxide on Au(111): Growth Mechanism and Interfacial Properties. Journal of Physical Chemistry C, 2021, 125, 24755-24763.	1.5	4

#	Article	IF	CITATIONS
19	The effect of nanoscale friction of mesoporous carbon supported ionic liquids on the mass transfer of CO2 adsorption. Physical Chemistry Chemical Physics, 2020, 22, 1097-1106.	1.3	11
20	Atomic intercalation of magnesium in mesoporous silica hollow spheres and its effect for removal of dyes. Applied Surface Science, 2020, 507, 144919.	3.1	13
21	Bowl-like Nanoreactors Composed of Packed Gold Nanoparticles Surrounded with Silica Nanosheets for a Photothermally Enhancing Enzymatic Reaction. ACS Applied Nano Materials, 2020, 3, 11465-11473.	2.4	3
22	Tailoring structural features and functions of fullerene rod crystals by a ferrocene-modified fullerene derivative. CrystEngComm, 2020, 22, 6287-6294.	1.3	7
23	Epitaxial Growth of Flat, Metallic Monolayer Phosphorene on Metal Oxide. ACS Nano, 2020, 14, 2385-2394.	7.3	27
24	Large Enantiospecificity of Step–kink Metal Surfaces: Contributions from the Backbone and Side Chain of ݱ-Amino Acids. Journal of Physical Chemistry C, 2020, 124, 742-748.	1.5	5
25	Recent Advances in Tin: From Two-Dimensional Quantum Spin Hall Insulator to Bulk Dirac Semimetal. Journal of Physical Chemistry Letters, 2020, 11, 1317-1329.	2.1	15
26	Highly flexible and mechanically strong polyaniline nanostructure @ aramid nanofiber films for free-standing supercapacitor electrodes. Nanoscale, 2020, 12, 5507-5520.	2.8	40
27	Highly Sensitive Gas-Sensing Films for Volatile Organic Acids from Imidazolium-Based Poly(ionic) Tj ETQq1 10.	784314 rgE	BT /Qverlock
28	Interfacial Effects on the Growth of Atomically Thin Film: Group VA Elements on Au(111). Advanced Materials Interfaces, 2019, 6, 1901050.	1.9	14
29	Imaging and Dynamics of Water Hexamer Confined in Nanopores. ACS Nano, 2019, 13, 10622-10630.	7.3	10
30	Quinone-Facilitated Coordinated Bipyrene and Polypyrene on Au(111) by Capture of Gold Adatoms. Journal of Physical Chemistry C, 2019, 123, 16281-16287.	1.5	8
31	Defect Generation and Surface Functionalization on Epitaxial Blue Phosphorene by C60 Adsorption. Journal of Physical Chemistry C, 2019, , .	1.5	13
32	Microwires of Au–Ag Nanocages Patterned via Magnetic Nanoadhesives for Investigating Proteins using Surface Enhanced Infrared Absorption Spectroscopy. ACS Applied Materials & Interfaces, 2019, 11, 18053-18061.	4.0	15
33	Tailoring the structure of Kevlar nanofiber and its effects on the mechanical property and thermal stability of carboxylated acrylonitrile butadiene rubber. Journal of Applied Polymer Science, 2019, 136, 47698.	1.3	16
34	Manipulating the Structural Transformation of Fullerene Microtubes to Fullerene Microhorns Having Microscopic Recognition Properties. ACS Nano, 2019, 13, 14005-14012.	7.3	47
35	Rational design of multifunctional properties for styrene-butadiene rubber reinforced by modified Kevlar nanofibers. Composites Part B: Engineering, 2019, 166, 196-203.	5.9	43
36	Enhanced Activity of Alcohol Dehydrogenase in Porous Silica Nanosheets with Wide Size Distributed Mesopores. Bulletin of the Chemical Society of Japan, 2019, 92, 275-282.	2.0	14

ARTICLE IF CITATIONS Waterâ€induced mechanically adaptive behavior of carboxylated acrylonitrileâ€butadiene rubber 1.5 reinforced by bacterial cellulose whiskers. Polymer Engineering and Science, 2019, 59, 58-65. Supermolecular Catalysts., 2019, , 93-172. 38 0 39 Porous Inorganic Nanoarchitectures for Catalysts., 2019, , 291-317. Introduction to Catalysts., 2019, , 1-9. 40 0 Stimuliâ€responsive polymer nanocomposites based on styreneâ€butadiene rubber and bacterial cellulose whiskers. Polymers for Advanced Technologies, 2018, 29, 1507-1517. 1.6 Water-induced modulus changes of bio-based uncured nanocomposite film based on natural rubber 42 2.5 24 and bacterial cellulose nanocrystals. Industrial Crops and Products, 2018, 113, 240-248. Mesoporous fullerene C₇₀ cubes with highly crystalline frameworks and unusually 6.4 59 enhanced photoluminescence properties. Materials Horizons, 2018, 5, 285-290. Enhanced Adsorption Selectivity of Aromatic Vapors in Carbon Capsule Film by Control of Surface 2.0 44 27 Surfactants on Carbon Capsule. Bulletin of the Chemical Society of Japan, 2018, 91, 391-397. Impact of various oxidation degrees of graphene oxide on the performance of styrene–butadiene 1.5 14 rubber nanocomposites. Polymer Engineering and Science, 2018, 58, 1409-1418. Stable, Efficient Red Perovskite Lightâ€Emitting Diodes by (α, Î)â€CsPbI₃ Phase Engineering. 46 7.8 105 Advanced Functional Materials, 2018, 28, 1804285. Hierarchical heterostructure of Ag-nanoparticle decorated fullerene nanorods (Ag–FNRs) as an effective single particle freestanding SERS substrate. Physical Chemistry Chemical Physics, 2018, 20, 1.3 18873-18878. Central metal dependent modulation of induced-fit gas uptake in molecular porphyrin solids. 48 2.2 2 Chemical Communications, 2018, 54, 7822-7825. Spongelike Porous Silica Nanosheets: From "Soft―Molecular Trapping to DNA Delivery. ACS Applied 4.0 Materials & amp; Interfaces, 2017, 9, 4509-4518. Sintering-Resistant Nanoparticles in Wide-Mouthed Compartments for Sustained Catalytic 50 1.6 44 Performance. Scientific Reports, 2017, 7, 41773. Highly Networked Capsular Silica–Porphyrin Hybrid Nanostructures as Efficient Materials for 4.0 Acetone Vapor Sensing. ACS Applied Materials & amp; Interfaces, 2017, 9, 9945-9954. Substrate-Mediated C–C and C–H Coupling after Dehalogenation. Journal of the American Chemical 52 6.6 39 Society, 2017, 139, 3669-3675. Tailoring rubber-filler interfacial interaction and multifunctional rubber nanocomposites by usage 5.9 38 of graphene oxide with different oxidation degrees. Composites Part B: Engineering, 2017, 124, 250-259.

OINGMIN JI

50

Enhanced compatibility and mechanical properties of carboxylated acrylonitrile butadiene rubber/styrene butadiene rubber by using graphene oxide as reinforcing filler. Composites Part B: 5.9 Engineering, 2017, 111, 243-250.

#	Article	IF	CITATIONS
55	A Nanoporous Cytochrome <i>c</i> Film with Highly Ordered Porous Structure for Sensing of Toxic Vapors. Advanced Materials, 2017, 29, 1702295.	11.1	23
56	Manipulation of fullerene superstructures by complexing with polycyclic aromatic compounds. Physical Chemistry Chemical Physics, 2017, 19, 29099-29105.	1.3	12
57	Nanofriction of Graphene/Ionic Liquid-Infused Block Copolymer Homoporous Membranes. Langmuir, 2017, 33, 11590-11602.	1.6	8
58	Highly Stretchable, Ultrasensitive, and Wearable Strain Sensors Based on Facilely Prepared Reduced Graphene Oxide Woven Fabrics in an Ethanol Flame. ACS Applied Materials & Interfaces, 2017, 9, 32054-32064.	4.0	156
59	Bismuth Incorporation Stabilized α-CsPbl ₃ for Fully Inorganic Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 2219-2227.	8.8	468
60	Morphology Adjustable Silica Nanosheets for Immobilization of Gold Nanoparticles. ChemistrySelect, 2017, 2, 5793-5799.	0.7	9
61	Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees. Applied Surface Science, 2017, 423, 584-591.	3.1	45
62	Enhanced mechanical, dielectric, electrical and thermal conductive properties of HXNBR/HNBR blends filled with ionic liquid-modified multiwalled carbon nanotubes. Journal of Materials Science, 2017, 52, 10814-10828.	1.7	28
63	Fabrication of Silica-Protein Hierarchical Nanoarchitecture with Gas-Phase Sensing Activity. Journal of Nanoscience and Nanotechnology, 2017, 17, 5908-5917.	0.9	12
64	Influence of ionic liquid on the polymer–filler coupling and mechanical properties of nanoâ€silica filled elastomer. Journal of Applied Polymer Science, 2017, 134, .	1.3	10
65	lonic liquid functionalized graphene oxide for enhancement of styreneâ€butadiene rubber nanocomposites. Polymers for Advanced Technologies, 2017, 28, 293-302.	1.6	50
66	Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 44458-44465.	4.0	57
67	Selfâ€Construction from 2D to 3D: Oneâ€Pot Layerâ€byâ€Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers. Angewandte Chemie, 2016, 128, 8566-8570.	1.6	13
68	Antibacterial Effect of Silver-Incorporated Flake-Shell Nanoparticles under Dual-Modality. ACS Applied Materials & Interfaces, 2016, 8, 18922-18929.	4.0	40
69	Coordination nanoarchitectonics at interfaces between supramolecular and materials chemistry. Coordination Chemistry Reviews, 2016, 320-321, 139-152.	9.5	82
70	Shape-controlled cobalt phosphide nanoparticles as volatile organic solvent sensor. Journal of Materials Chemistry C, 2016, 4, 4967-4977.	2.7	29
71	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angewandte Chemie - International Edition, 2016, 55, 8228-8234.	7.2	184
72	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angewandte Chemie, 2016, 128, 8368-8374.	1.6	28

#	Article	IF	CITATIONS
73	Nanoarchitectonics for Dynamic Functional Materials from Atomic″Molecular‣evel Manipulation to Macroscopic Action. Advanced Materials, 2016, 28, 1251-1286.	11.1	441
74	Polyvinyl pyrrolidone modified graphene oxide for improving the mechanical, thermal conductivity and solvent resistance properties of natural rubber. RSC Advances, 2016, 6, 54668-54678.	1.7	52
75	Surfactant-Triggered Nanoarchitectonics of Fullerene C ₆₀ Crystals at a Liquid–Liquid Interface. Langmuir, 2016, 32, 12511-12519.	1.6	46
76	Selfâ€Construction from 2D to 3D: Oneâ€Pot Layerâ€byâ€Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers. Angewandte Chemie - International Edition, 2016, 55, 8426-8430.	7.2	101
77	Molecular cavity nanoarchitectonics for biomedical application and mechanical cavity manipulation. CrystEngComm, 2016, 18, 4890-4899.	1.3	34
78	Supercapacitive hybrid materials from the thermolysis of porous coordination nanorods based on a catechol porphyrin. Journal of Materials Chemistry A, 2016, 4, 5737-5744.	5.2	42
79	Silica Nanomaterials. Methods in Pharmacology and Toxicology, 2016, , 137-151.	0.1	1
80	CHAPTER 7. Halloysite and Related Mesoporous Carriers for Advanced Catalysis and Drug Delivery. RSC Smart Materials, 2016, , 207-222.	0.1	2
81	Templated Synthesis for Nanoarchitectured Porous Materials. Bulletin of the Chemical Society of Japan, 2015, 88, 1171-1200.	2.0	512
82	Hollow Capsules Fabricated by Template Polymerization of <i>N</i> -Vinylcaprolactam. Journal of Nanoscience and Nanotechnology, 2015, 15, 2389-2393.	0.9	6
83	Manipulation of Shell Morphology of Silicate Spheres from Structural Evolution in a Purely Inorganic System. Chemistry - an Asian Journal, 2015, 10, 1379-1386.	1.7	15
84	Highly Ordered 1D Fullerene Crystals for Concurrent Control of Macroscopic Cellular Orientation and Differentiation toward Largeâ€Scale Tissue Engineering. Advanced Materials, 2015, 27, 4020-4026.	11.1	119
85	Nanoarchitectonics: a new materials horizon for nanotechnology. Materials Horizons, 2015, 2, 406-413.	6.4	270
86	Thin Film Nanoarchitectonics. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 466-479.	1.9	46
87	Nanosheet transfection: effective transfer of naked DNA on silica glass. NPG Asia Materials, 2015, 7, e184-e184.	3.8	26
88	Vortex-Aligned Fullerene Nanowhiskers as a Scaffold for Orienting Cell Growth. ACS Applied Materials & Interfaces, 2015, 7, 15667-15673.	4.0	112
89	Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future. Nano Today, 2015, 10, 138-167.	6.2	284
90	Gene transfer on inorganic/organic hybrid silica nanosheets. Physical Chemistry Chemical Physics, 2015, 17, 25455-25462.	1.3	20

#	Article	lF	CITATIONS
91	Nanoarchitectonics of Molecular Aggregates: Science and Technology. Journal of Nanoscience and Nanotechnology, 2014, 14, 390-401.	0.9	35
92	Bioinspired nanoarchitectonics as emerging drug delivery systems. New Journal of Chemistry, 2014, 38, 5149-5163.	1.4	128
93	Highly ordered macro-mesoporous carbon nitride film for selective detection of acidic/basic molecules. Chemical Communications, 2014, 50, 5976-5979.	2.2	61
94	Research Update: Mesoporous sensor nanoarchitectonics. APL Materials, 2014, 2, .	2.2	59
95	Mesoporous architectures with highly crystallized frameworks. Journal of Materials Chemistry A, 2014, 2, 12096-12103.	5.2	26
96	Bioactive nanocarbon assemblies: Nanoarchitectonics and applications. Nano Today, 2014, 9, 378-394.	6.2	236
97	Self-Assembly: From Amphiphiles to Chromophores and Beyond. Molecules, 2014, 19, 8589-8609.	1.7	64
98	Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution. Chemistry Letters, 2014, 43, 36-68.	0.7	813
99	Nanoporous Carbon Sensor with Cage-in-Fiber Structure: Highly Selective Aniline Adsorbent toward Cancer Risk Management. ACS Applied Materials & Interfaces, 2013, 5, 2930-2934.	4.0	62
100	Shell-adjustable hollow â€~soft' silica spheres as a support for gold nanoparticles. Journal of Materials Chemistry A, 2013, 1, 3600.	5.2	58
101	Electrochemical Synthesis of Transparent, Amorphous, C ₆₀ â€Rich, Photoactive, and Lowâ€Doped Film with an Interconnected Structure. Small, 2013, 9, 2064-2068.	5.2	21
102	Controlling Porphyrin Nanoarchitectures at Solid Interfaces. Langmuir, 2013, 29, 7291-7299.	1.6	14
103	Alcohol-induced decomposition of Olmstead's crystalline Ag(<scp>i</scp>)–fullerene heteronanostructure yields â€~bucky cubes'. Journal of Materials Chemistry C, 2013, 1, 1174-1181.	2.7	61
104	Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. Journal of Materials Chemistry A, 2013, 1, 2913.	5.2	90
105	Enzyme nanoarchitectonics: organization and device application. Chemical Society Reviews, 2013, 42, 6322.	18.7	376
106	Fullerene Nanoarchitectonics: From Zero to Higher Dimensions. Chemistry - an Asian Journal, 2013, 8, 1662-1679.	1.7	198
107	Langmuir Nanoarchitectonics: One-Touch Fabrication of Regularly Sized Nanodisks at the Air–Water Interface. Langmuir, 2013, 29, 7239-7248.	1.6	49
108	Hydrogen-bond-driven â€~homogeneous intercalation' for rapid, reversible, and ultra-precise actuation of layered clay nanosheets. Chemical Communications, 2013, 49, 3631.	2.2	23

#	Article	IF	CITATIONS
109	Alkyl Imidazolium Ionic-Liquid-Mediated Formation of Gold Particle Superstructures. Langmuir, 2013, 29, 7186-7194.	1.6	20
110	Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. Physical Chemistry Chemical Physics, 2013, 15, 10580.	1.3	311
111	Bioactive flake–shell capsules: soft silica nanoparticles for efficient enzyme immobilization. Journal of Materials Chemistry B, 2013, 1, 3248.	2.9	37
112	Soft Capsules, Hard Capsules, and Hybrid Capsules. Soft Materials, 2012, 10, 387-412.	0.8	22
113	Nanoarchitectonics for Mesoporous Materials. Bulletin of the Chemical Society of Japan, 2012, 85, 1-32.	2.0	650
114	One-touch Nanofabrication of Regular-sized Disks through Interfacial Dewetting and Weak Molecular Interaction. Chemistry Letters, 2012, 41, 170-172.	0.7	13
115	Electrochemical Coupling Layer-by-layer (ECC-LbL) Assembly in Patterning Mode. Chemistry Letters, 2012, 41, 383-385.	0.7	24
116	Novel Multilayer Thin Films: Hierarchic Layer-by-Layer (Hi-LbL) Assemblies. , 2012, , 69-81.		2
117	Silica-based gene reverse transfection: an upright nanosheet network for promoted DNA delivery to cells. Chemical Communications, 2012, 48, 8496.	2.2	32
118	Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems. Science and Technology of Advanced Materials, 2012, 13, 053001.	2.8	63
119	A facile photo-induced synthesis of COOH functionalized meso-macroporous carbon films and their excellent sensing capability for aromatic amines. Chemical Communications, 2012, 48, 9029.	2.2	24
120	Effect of molecular weight of polyethyleneimine on loading of CpG oligodeoxynucleotides onto flake-shell silica nanoparticles for enhanced TLR9-mediated induction of interferon-α. International Journal of Nanomedicine, 2012, 7, 3625.	3.3	20
121	Direct Carbonization of Al-Based Porous Coordination Polymer for Synthesis of Nanoporous Carbon. Journal of the American Chemical Society, 2012, 134, 2864-2867.	6.6	588
122	Novel block copolymer templates for tuning mesopore connectivity in cage-type mesoporous silica films. Journal of Materials Chemistry, 2012, 22, 20008.	6.7	26
123	Materials self-assembly and fabrication in confined spaces. Journal of Materials Chemistry, 2012, 22, 10389.	6.7	75
124	Chapter 5. Mesoporous Nanoarchitectonics. RSC Nanoscience and Nanotechnology, 2012, , 112-128.	0.2	1
125	Flakeâ€Shell Capsules: Adjustable Inorganic Structures. Small, 2012, 8, 2345-2349.	5.2	55
126	Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Materials, 2012, 4, e17-e17.	3.8	366

#	Article	IF	CITATIONS
127	Inorganic Nanoarchitectonics for Biological Applications. Chemistry of Materials, 2012, 24, 728-737.	3.2	206
128	Preparation of Highly Ordered Nitrogenâ€Containing Mesoporous Carbon from a Gelatin Biomolecule and its Excellent Sensing of Acetic Acid. Advanced Functional Materials, 2012, 22, 3596-3604.	7.8	194
129	Large scale assembly of ordered donor–acceptor heterojunction molecular wires using the Langmuir–Blodgett technique. Chemical Communications, 2011, 47, 6825.	2.2	23
130	Synthesis and metallic probe induced conductance of Au tipped ultranarrow PbS rods. Chemical Communications, 2011, 47, 8421.	2.2	13
131	Real time self-assembly and reassembly of molecular nanowires of trigeminal amphiphile porphyrins. Chemical Communications, 2011, 47, 2285-2287.	2.2	39
132	Size controlled ultranarrow PbS nanorods: spectroscopy and robust stability. Journal of Materials Chemistry, 2011, 21, 5671.	6.7	34
133	Layer-by-layer assembly for drug delivery and related applications. Expert Opinion on Drug Delivery, 2011, 8, 633-644.	2.4	107
134	Hierarchic Template Approach for Synthesis of Silica Nanocapsules with Tuned Shell Thickness. Chemistry Letters, 2011, 40, 840-842.	0.7	5
135	Layer-by-layer self-assembled shells for drug delivery. Advanced Drug Delivery Reviews, 2011, 63, 762-771.	6.6	404
136	Supramolecular Materials from Inorganic Building Blocks. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 1-9.	1.9	21
137	Layerâ€byâ€Layer Films of Graphene and Ionic Liquids for Highly Selective Gas Sensing. Angewandte Chemie - International Edition, 2010, 49, 9737-9739.	7.2	296
138	Enzyme-Encapsulated Layer-by-Layer Assemblies: Current Status and Challenges Toward Ultimate Nanodevices. Advances in Polymer Science, 2010, , 51-87.	0.4	88
139	Open-Mouthed Metallic Microcapsules: Exploring Performance Improvements at Agglomeration-Free Interiors. Journal of the American Chemical Society, 2010, 132, 14415-14417.	6.6	89
140	Hierarchic Nanostructure for Autoâ€Modulation of Material Release: Mesoporous Nanocompartment Films. Advanced Functional Materials, 2009, 19, 1792-1799.	7.8	83
141	Hydrogenâ€Bondâ€Assisted "Gold Cold Fusion―for Fabrication of 2D Web Structures. Chemistry - an Asian Journal, 2009, 4, 1055-1058.	1.7	12
142	Layer-by-Layer Films of Dual-Pore Carbon Capsules with Designable Selectivity of Gas Adsorption. Journal of the American Chemical Society, 2009, 131, 4220-4221.	6.6	143
143	Supramolecular approaches to biological therapy. Expert Opinion on Biological Therapy, 2009, 9, 307-320.	1.4	28
144	Coupling of soft technology (layer-by-layer assembly) with hard materials (mesoporous solids) to give hierarchic functional structures. Soft Matter, 2009, 5, 3562.	1.2	84

#	Article	IF	CITATIONS
145	Biomaterials and Biofunctionality in Layered Macromolecular Assemblies. Macromolecular Bioscience, 2008, 8, 981-990.	2.1	106
146	A Layered Mesoporous Carbon Sensor Based on Nanoporeâ€Filling Cooperative Adsorption in the Liquid Phase. Angewandte Chemie - International Edition, 2008, 47, 7254-7257.	7.2	140
147	Multiâ€Dimensional Control of Surfactantâ€Guided Assemblies of Quantum Gold Particles. Advanced Materials, 2008, 20, 4027-4032.	11.1	52
148	Stimuli-Free Auto-Modulated Material Release from Mesoporous Nanocompartment Films. Journal of the American Chemical Society, 2008, 130, 2376-2377.	6.6	142
149	One-Dimensional Confinement of CdS Nanodots and Subsequent Formation of CdS Nanowires by Using a Clycolipid Nanotube as a Ship-in-Bottle Scaffold. Journal of Physical Chemistry C, 2008, 112, 18412-18416.	1.5	13
150	Regulation of Silica Nanotube Diameters:Â Solâ~'Gel Transcription Using Solvent-Sensitive Morphological Change of Peptidic Lipid Nanotubes as Templates. Chemistry of Materials, 2007, 19, 1329-1334.	3.2	53
151	Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physical Chemistry Chemical Physics, 2007, 9, 2319.	1.3	1,143
152	Hydrogel behavior of a sugar-based gelator by introduction of an unsaturated moiety as a hydrophobic group. Organic and Biomolecular Chemistry, 2006, 4, 2033.	1.5	42
153	Helical Arrays of CdS Nanoparticles Tracing on a Functionalized Chiral Template of Glycolipid Nanotubes. Chemistry of Materials, 2006, 18, 403-406.	3.2	65
154	Confined Sol–Gel Reaction Using a Neutral Glycolipid Nanotube as a Template: Aqueous Fabrication of Titania Rod Structures. Chemistry Letters, 2006, 35, 394-395.	0.7	7
155	Self-assembly of glycolipids on silica nanotube templates yielding hybrid nanotubes with concentric organic and inorganic layers. Journal of Materials Chemistry, 2005, 15, 743.	6.7	42
156	Chemical synthesis of transition metal oxide nanotubes in water using an iced lipid nanotube as a template. Chemical Communications, 2005, , 4411.	2.2	40
157	Controlling Wall Thickness of Silica Nanotubes within 4-nm Precision. Chemistry Letters, 2004, 33, 504-505.	0.7	24